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ABSTRACT

This report presents an application of a computation-based human reliability analysis framework 
called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER), a 
method developed as part of the Risk Informed Safety Margin Characterization (RISMC) 
pathway within the U.S. Department of Energy’s Light Water Reactor Sustainability Program 
that aims to extend the life of the currently operating fleet of U.S. commercial nuclear power 
plants. HUNTER is a flexible hybrid approach that functions as an framework for dynamic 
modeling, including a simplified model of human cognition—a virtual operator—that produces 
relevant outputs such as the human error probability (HEP), time spent on task, or task decisions 
based on relevant plant evolutions. HUNTER is the human reliability analysis counterpart to the 
Risk Analysis and Virtual ENvironment (RAVEN) framework used for dynamic probabilistic 
risk assessment. Although both RAVEN and HUNTER are still under various stages of 
development, this report presents a successfully integrated and implemented RAVEN-HUNTER
initial demonstration. The demonstration in this report centers on a station blackout scenario, 
using complexity as the sole virtual operator performance-shaping factor (PSF). The 
implementation of RAVEN-HUNTER can be readily scaled to other nuclear power plant 
scenarios of interest and include additional PSFs in the future.
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1. INTRODUCTION

1.1 Human Unimodel for Nuclear Technology to Enhance Reliability

This report presents an application of a computation-based human reliability analysis (CBHRA) 
framework called the Human Unimodel for Nuclear Technology to Enhance Reliability 
(HUNTER; see Boring et al., 2015). A unimodel—the U in HUNTER—is a simplified cognitive 
model. Thus, HUNTER represents a simplified cognitive model or a collection of simplified 
cognitive models to support dynamic risk analysis. HUNTER is a hybrid approach built on past 
work from cognitive psychology, human performance modeling, and human reliability analysis 
(HRA). Using these research fields as background, HUNTER functions as a simplified model of 
human cognition—a virtual operator—that, when combined with a computation engine such as a 
thermo-hydraulics based nuclear power plant simulation model, can produce outputs such as the 
human error probability (HEP), time spent on task, or task decisions based on relevant plant 
evolutions. 

HUNTER is flexible in terms of which inputs and cognitive evaluations are used and which 
outputs it produces. HUNTER has been developed not as a standalone HRA method but rather as 
a framework that ties together different HRA methods to model dynamic risk of human activities 
and serve as an interface between HRA and other aspects of the dynamic modeling, such as 
thermo-hydraulic code, as part of an overall probabilistic risk assessment (PRA). HUNTER is 
the HRA counterpart to the Risk Analysis and Virtual ENvironment (RAVEN; see Chapter 3)
framework in PRA, as depicted in Figure 1. Although both RAVEN and HUNTER are still under 
various stages of development, this report represents a successfully integrated and implemented 
RAVEN-HUNTER demonstration. The demonstration in this report centers on a station blackout 
scenario, but the implementation of RAVEN-HUNTER is scalable to other nuclear power plant 
scenarios of interest in the future.

Figure 1. Framework for computation-based HRA (from Boring et al., 2015).

Cognitive
Models

Data
Sources
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• Model
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HUNTER was created with the goal of including HRA in areas where it has not been represented 
so far and to reduce uncertainty by accounting for human performance more accurately than 
current HRA approaches. While we have adopted particular methods to build an initial model, 
the HUNTER framework is intrinsically flexible to new modules that achieve particular 
modeling goals. Fodor, speaking to the enterprise of cognitive science, suggested that the brain 
was comprised of many separate functions based in neuroanatomical structures of the brain 
(1983). He famously termed this clustering of mental systems the modularity of mind, which we 
here extend to the modularity of models of mind. Computation-based HRA in HUNTER does not 
consist of a single HRA model or method; rather, it can encompass a number of different HRA 
approaches that account for different aspects of human performance. A goal of HUNTER is, in 
fact, to “dynamicize” legacy HRA approaches wherever feasible.

In the present report, the HUNTER implementation has the following goals:

Integration through RAVEN with a high fidelity thermo-hydraulic code capable of 
modeling nuclear power plant behaviors and transients
Consideration of risk through integration with PRA modeling
Incorporation of a solid psychological basis for operator performance
Demonstration of a functional dynamic model of a plant upset condition and appropriate 
operator response.

This report outlines the effort to develop the HUNTER framework and presents the case study of 
a station blackout (SBO) scenario to demonstrate the various modules implemented under the 
initial HUNTER research umbrella.

The HUNTER project is part of the Risk Informed Safety Margin Characterization (RISMC) 
research pathway within the U.S. Department of Energy’s Light Water Reactor Sustainability 
(LWRS) program that aims to extend the life of the currently operating fleet of U.S. commercial 
nuclear power plants. HUNTER has the potential to model risk more accurately across a greater 
range of scenarios than has been possible with conventional HRA approaches. Additionally, 
HUNTER provides a crucial connection between RAVEN and human performance, which 
extends the utility of that modeling code. As such, HUNTER ultimately aims to ensure the 
continued safety and reliability of currently operating nuclear power plants.

1.2 Outline of Report

This report steps through multiple modules in support of defining and demonstrating the 
HUNTER framework. The chapters correspond to different modeling modules and are as 
follows:

Chapter 2 provides background on HRA and, specifically, the necessary transition from 
traditional, static HRA methods to dynamic or computation-based methods
Chapter 3 provides background on RAVEN, which is used as the control logic driver for 
the thermo-hydraulic code (RELAP-7) used in the nuclear power plant simulations for the 
demonstration in this report
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Chapter 4 presents the GOMS-HRA (Goals, Operators, Methods, and Selection rules –
Human Reliability Analysis; Boring & Rasmussen, 2016) method used to decompose the 
station blackout scenario used in the demonstration into standardized task units suitable 
for task timing and error rate prediction
Chapter 5 presents a dynamic model for complexity, which serves as a performance 
shaping factor (PSF) used in quantification of the HEP
Chapter 6 presents a general approach for dynamic HEP calculation
Chapter 7 presents the SBO case study, implementation details, and results
Chapter 8 summarizes lessons learned on HUNTER and outlines future research 
directions.
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2. BACKGROUND ON HUMAN RELIABILITY ANALYSIS

2.1 Traditional Human Reliability Analysis

In HRA, human action or several human actions in a task or scenario are analyzed in terms of the 
likelihood that an operator or a crew will be successful (often in preventing a potential accident 
scenario from leading to core damage in a nuclear power plant or another form of major 
accident). There are dozens of different HRA methods (see Boring, 2012; Spurgin, 2010;
Rasmussen, in press), leading to many variations in how HRAs are conducted, but in general the 
HRA process consists of:

Identifying possible human errors and contributors,
Modeling human error, and 
Quantifying HEPs (Swain, 1990).

In a traditional or static HRA, the human reliability analyst determines the quantification by 
choosing the most suited task type and/or appropriate PSFs, which is then used in an equation to 
estimate the HEP (Figure 1). This oversimplified description of HRA may falsely provide the 
impression that performing an HRA is a quick and easy task in which the analyst simply makes a 
few choices from the items in a table to produce an HEP value. However, a proper HRA relies on 
a solid qualitative data collection and qualitative data analysis. This is not only done so that the 
analyst can choose the appropriate task types and PSFs, but also so that a traceable rationale is 
documented concerning why specific selections were made and providing clear solutions to 
redress high risk tasks identified during the analysis.

Figure 2. A common quantification approach in traditional or static HRA. 

The human reliability analyst plays a central and important role during quantification in 
traditional static HRA, as the analyst will have to make decisions on which task types and PSFs 
to choose for the task at hand. There are rarely directly observable objective variables, which 
require the analyst to make subjective judgments on how to account for a wide range of error-
inducing aspects from the task or scenario. This traditional approach can work well as long as the 
analyst is skilled; the qualitative data and analysis contain sufficient detail to document the 
rationale for the choices made; and the potential variations within a scenario are not to numerous.
However, the static traditional HRA may then be limited to the specific scenario, and it can be 
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difficult to generalize the results to other scenarios. In fact, scenario reusability in HRA remains 
a highly coveted but still elusive goal.

In traditional static HRA, a scenario is established either at the beginning of the analysis, or one 
is already predetermined through a larger risk analysis process such as a PRA. A variety of 
methods—such as task analysis, error trees, event trees, and timeline analyses—are then used to 
determine the necessary and relevant human error information contained in the scenario and 
accompanying human actions. The modeling is generally based on a linear path of actions the 
operator must perform to avoid a major accident (e.g., core damage in the nuclear process control 
domain; Figure 2). Failures to complete these tasks are commonly referred to as errors of 
omission. Wrong actions—errors of commission—are often not explicitly included in traditional 
static HRA.

Figure 3. The Linear task path of traditional static HRA, modeled through an event tree.

2.2 Computation-Based HRA

The approach of CBHRA relies on the creation of a virtual operator that is interfaced with a 
realistic plant model that can accurately simulate plant thermo-hydraulic physics behavior 
(Boring et al. 2015). Ultimately, the virtual reactor operator should consist of comprehensive 
cognitive models comprised of artificial intelligence, though at this time a much more simplified 
operator model is used to simulate performance of a typical operator. CBHRA is a merger 
between an area where HRA has previously been represented—probabilistic risk models—and 
an area where it has not—realistically simulated plant models through mechanistic thermal-
hydraulic multi-physics codes. Through this approach, it is possible to evaluate a much broader 
spectrum of scenarios, both those based on previous experience and those that are unexampled, 
i.e., that have not been assessed with static HRA.

This is a promising path to advance the methodology of HRA, but there are numerous challenges 
that must be overcome before a fully functioning plant simulation including a virtual operator 
model becomes realized. In CBHRA, a scenario can be rapidly simulated thousands of times (see 
Figure 4), which renders individual subjective evaluations by a human reliability analyst during 
each simulation run impractical. Unfortunately, most of the PSFs in current HRA methods are 
operationalized and described in a way that suits subjective evaluations from the analyst, which 
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=> Task 2 =>- Task 3
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presents challenges to translate the static optimized methods to a coding scheme that can
automatically and dynamically set the PSF at the correct level during simulation runs.
Despite these challenges, CBHRA is worthy to pursue because it will be able to include 
significantly more paths than the limited paths seen in traditional static HRA. CBHRA may also
include emergent changes throughout the scenario, ultimately providing a better quantification of 
the risk than using pre-scripted risk trees.

Figure 4. CBHRA allows for multiple outcomes from each task, leading to a large number 
of possible ways a scenario can play out.

2.3 The Need for Computation-Based Human Reliability Analysis

PRA models plant safety through quantitative risk measures. Typically measured as conditional 
core damage frequency or probability, the output of the PRA accounts for the likelihood of 
damage to the plant fuel, containment, or surrounding environment in the event of failures to 
specific hardware systems. Many hardware systems are operated by humans; as such, human 
actions or inactions are integral to the overall analysis of risk.

Mosleh (2014) and Coyne and Siu (2013) have emphasized the importance of computational 
approaches to PRA. These approaches, which use dynamic simulations of events at plants, 
potentially provide greater accuracy in overall risk modeling. Here we explore the human side of
dynamic PRA. The key elements of dynamic or computation-based HRA are:

Success

Failure
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Use of computational techniques, namely simulation and modeling, to integrate virtual 
operator models with virtual plant models
Dynamic modeling of human cognition and actions
Incorporation of these respective elements into a PRA framework.

The goal of the present research is to achieve a high fidelity causal representation of the role of 
the human operator at the plant. By better accounting for human actions, the uncertainty 
surrounding PRA can be reduced. Additionally, by modeling human actions dynamically, it is 
possible to model types of activities and events in which the human role is currently not clearly 
understood or predicted, e.g., unexampled events such as severe accidents. The ability to 
simulate the role of the human operator complements and, indeed, greatly enhances other PRA 
modeling efforts.

A significant influence on plant behavior and performance comes from the human operators who 
use that plant. The computational engine of the virtual plant model therefore needs to interface 
with a virtual operator that models operator performance at the plant. In current nuclear power 
plants (NPPs), most plant actions are manually controlled from the control room by reactor 
operators (ROs) or locally at the physical plant systems by field operators. Consequently, in 
order to have a non-idealized model of plant performance, it is necessary to account for those 
human actions that ultimately control the plant. A high fidelity representation of an NPP 
absolutely requires an accurate model of its human operators in order to faithfully represent real-
world operation.

While it is tempting simply to script human actions at the NPP according to operating 
procedures, there remains considerable variability in operator performance despite the most 
formalized and invariant procedures to guide activities (Forester et al., 2014). Human decision 
making and behavior are influenced by a myriad of factors at and beyond the plant. Internal to 
the plant, the operators may be working to prioritize responses to concurrent demands, to 
maximize safety, and/or to minimize operational disruptions. While it is a safe assumption that 
the operators will act first to maintain safety and then electricity generation, the way he or she 
accomplishes those goals may not always flow strictly from procedural guidance. Operator 
expertise and experience may govern actions beyond rote recitation of procedures. As a result, 
human operators may not always make decisions and perform actions in a seemingly rational 
manner. Modeling human performance without considering the influences on the operators will 
only result in uncertain outcomes.

Conventional, static HRA supports PRA by considering the human contribution to overall 
system risk. HRA may be successfully integrated into PRA in a well-established process (Bell & 
Swain, 1983; EPRI, 1992; IEEE, 1997). The key to this integration is the human failure event 
(HFE), which represents a clustering of human activities related to the operation of a particular 
system or component. The HFE can be quantified using any of a number of HRA methods (for 
recent surveys, see Bell & Holroyd, 2009; Chandler et al., 2006; and Forester et al., 2006). The 
HFE is integrated into the event trees used in the PRA. Often the clustering of activities under 
the HFE is done using fault tree logic. In practice, the HFE is defined as the entirety of human 
actions related to the human interaction with a particular system. In other words, the HFE is 
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defined top-down, from the PRA level of interest, to encompass all human actions that can 
contribute to the fault of a component or system modeled in the PRA.

Static HRA mimics the predominance of static PRA. The key point in static HRA and PRA is 
that events are analyzed for an assumed, e.g., typical, window of time. The HFE for static HRA 
does not change as a function of time or the event progression; the event sequences are fixed in 
the HRA, and the analysis represents a snapshot of time. Either the analysis represents a very 
generic context in which the event would occur, or the analysis is agnostic to time, meaning that 
time evolution is simply not factored into the calculation of the HEP. Other PSFs apart from time 
drive the quantification of the HEP.

As Boring, Joe, and Mandelli (2015) point out, widely used HRA methods, such as the 
Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method (Gertman et 
al., 2005), are static. They do not provide a dynamic account of human actions or how the PSFs 
can dynamically modify the HEP over time. Building on the three basic elements of HRA 
outlined in Section 2.1, SPAR-H and similar methods generally entail three steps: 

Identification of human failure events (often through task analysis),
Assessment of context (e.g., via assigning states to PSFs and other contextual factors), and
Computation of an HEP (generally via an equation defining how the state of the contextual 
variables, e.g. PSFs, changes a nominal HEP for the task and/or HFE).

A human reliability analyst using SPAR-H would first screen for HFEs involving risk significant 
human errors and successful human actions. The analyst would then use SPAR-H to model and 
quantify the operator diagnoses (e.g., cognitive activities) and operator actions (e.g., behaviors) 
associated with the identified HFEs, starting with nominal HEPs, and then multiplying the 
nominal HEPs by any or all of the eight PSF modifiers provided in the method. 

SPAR-H calculates an HEP based on a static rating of PSFs. In essence:

HEPHFE = f(HEPnominal | PSFs) (1)

where:

HEPHFE is the human error probability for the human failure event,
HEPnominal is the nominal or default HEP provided in the method, and
PSFs is the set of performance shaping factors that is considered in the method.

Of course, different HRA methods have vastly different approaches to estimating HEPs, and not 
all methods will formally enlist nominal HEPs or PSFs. Conceptually, however, the point 
remains that the HEP is a function of a particular probabilistic approach given some context that 
affects operator performance. Given this simplified approach, once the HEP is calculated as a 
function of how PSFs modify the nominal HEP, it remains unchanged over the (time) duration of 
the HFE (see Figure 5).
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Figure 5. The non-effect of time on the error estimate in static HRA.

It should be noted that SPAR-H does, indeed, model time as a PSF. Specifically, SPAR-H
analyzes the impact of available time to complete the task on the HEP. A shorter window of time 
degrades the operators’ performance or at least their ability to complete the task successfully. 
The modeling of time as a PSF is, however, not the same as dynamic HRA. Time, as modeled in 
SPAR-H and other HRA methods, is dynamically invariant for the HFE. For the specific HFE 
being analyzed, the analyst will not typically look at a range of time windows or how that time 
window changes throughout alternate event evolutions. Time, in static HRA, is simply a 
snapshot of an available resource the operator needs, which is firmly fixed in a predefined HFE 
in the PRA.

The preceding discussion has centered on HFE modeling and HEP quantification for 
conventional HRA, which are static in nature. Once the overall system is modeled, including 
HFEs, the HFEs do not change as a result of the event progression. Dynamic HRA does not rely 
on a fixed set of event and fault trees to model event outcome. Rather, it builds the event 
progression dynamically, as a result of ongoing actions (Acosta & Siu, 1993). The dynamic 
approach in PRA has proved especially useful for modeling beyond design basis accidents, 
where not all failure combinations (and, importantly, not all recovery opportunities) can be 
anticipated or have been included in the static model. Additionally, the failure of multiple 
components or unusual sequences of faults, even within design basis, may challenge the fidelity 
of the static PRA model. While such events are rare, dynamic modeling affords the opportunity 
to anticipate such permutations and address them in a risk-informed manner should they occur. 

Boring (2007), among others, explains the conceptual shift from static HRA to dynamic HRA. 
Key aspects of this shift are the transition from predictions based on fixed models of accident 
sequences into predictions based on direct simulation of an accident sequence, with explicit 
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consideration of timing of key events. For HRA to fit into this dynamic framework, the models 
must follow a parallel path, shifting away from estimating the probability of a static event, and 
into simulating the multitude of possible human actions relevant to an event.

Traditional static HRA attempts to directly estimate or assign probabilities to defined HFEs. 
Example HFEs are “failure to initiate feed and bleed” and “failure to align electrical bus to 
alternative feed.” In this new dynamic HRA framework, the focus shifts to simulating the human 
performance within a dynamic PRA framework and using the results of those simulations to 
assign the HEP. Dynamic HRA yields HFEs such as “failure to initiate feed and bleed over 
time.”

In essence, the HEP that is quantified varies over time as PSFs change in their influence:

HEPdynamic = f(HEPnominal | PSF(t)) (2)

where t is time. The PSFs change their influence on the HEP over time, because the PSFs change 
states as the context of the event unfolds.

This dynamic formulation of the HEP in Equation 2 is similar to the static formulation in 
Equation 1 in that the HEP is quantified as a function of the nominal HEP as adjusted by PSFs. 
The key difference is that both the state of the PSFs and the influence of the PSFs can change 
over time. The final effect is that the HEP varies over time (see Figure 6).

Figure 6. The effect of time on the error estimate in dynamic HRA.

As depicted in Figure 7, dynamic HRA must account for subtasks. Figure 7 may represent a 
single HFE, which is comprised of several time segments and several subtasks. The current-
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moment quantification varies not only as a function of time but also as a function of the subtasks 
carried out by the operators. Additionally, as discussed in Boring (2015), there is a dynamic 
dependence caused by the lingering effects of PSFs across subtasks. Each subtask is not a fresh 
slate in terms of influences on performance. PSFs like stress do not subside instantly simply 
because the source or cause of that stress has disappeared. Rather, PSFs have a momentum that 
must be factored into the evolution of the event. The subtasks may represent decision or critical 
performance points where the outcome can change as a result of PSFs. It is therefore not feasible 
to model at the HFE level, where important influences on the event outcome may be overlooked. 
Instead, dynamic HRA requires subtask granularity. 

Figure 7. Hypothetical subtask HEP calculation for a dynamic event progression.

As discussed in Boring (2015), most HRA methods do not provide clear guidance on defining 
HFEs or for decomposing these events into meaningful subtasks. This serves as a significant 
disconnect between the task analysis approaches common to human factors and the HFEs used 
by HRA, and it can be especially difficult when a task analysis is available to use it to build an 
HFE. It is generally adequate for static HRA to be at the HFE level. The HFE is defined by the 
PRA in a top-down manner reflecting the failure of a system with a possible human contribution. 
The output of the HFE is the HEP, which serves as the input in the overall PRA model. It is, 
however, inadequate for dynamic HRA to be modeled only at the HFE level. It must account for 
the nuances of operator actions that can change across subtasks or steps in a procedure. For this 
reason, it is necessary to define an approach that adequately accounts for subtask modeling in 
order to allow dynamic operator modeling.
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3. RAVEN SIMULATION FRAMEWORK

3.1 Background

RAVEN (Risk Analysis and Virtual ENviroment; Rabiti et al., 2013; Mandelli et al., 2013) is a 
software framework that acts as the control logic driver for the thermal-hydraulic code RELAP-
7, a newly developed software at Idaho National Laboratory (INL). RAVEN is also a multi-
purpose PRA code that allows for probabilistic analysis of complex systems. It is designed to 
derive and actuate the control logic required to simulate both plant control system and operator 
actions (e.g., guided procedures) and to perform both Monte-Carlo sampling (Rabiti, Mandelli, 
Alfonsi, Cogliati, & Kinoshita, 2013) of random distributed events and dynamic branching-type
analyses (Alfonsi et al., 2014).

The RAVEN statistical framework is a recent add-on to the overall RAVEN package that allows 
the user to perform generic statistical analysis. By statistical analysis we include:

Sampling of codes, either stochastic (e.g., Monte-Carlo (Marseguerra, Zio, Devooght, & 
Labeau, 1998) and Latin Hypercube Sampling (Helton & Davis, 2003) or deterministic 
(e.g., grid and Dynamic Event Tree; Amendola & Reina, 1984)
Generation of Reduced Order Models (Abdel-Khalik, Bang, Kennedy, & Hite, 2012),
also known as Surrogate models
Post-processing of the sampled data and generation of statistical parameters (e.g., mean, 
variance, covariance matrix).

Figure 8. Scheme of RAVEN statistical framework components.

Figure 8 shows a general overview of the elements that comprise the RAVEN statistical 
framework:

L Code

Run 1

L 
L 

Code

Interfaces

External ROM

\l/ 

CPU

Node 1

Code CPU

Run 2 \ -In Node

Code

Run N

I CPU
Node N

RAV E N

Samplers

Post-Processing

and

Data Mining

module

Database manager

HDF5 Hierarchical Storing Structure

DET

Database

Interface

Output PRA

Database Database

LProbability

Engine



14

Model: it represents the pipeline between input and output space. It comprises both codes 
(e.g., RELAP-7) and also Reduced Order Models 
Sampler: it is the driver for any specific sampling strategy (e.g., Monte-Carlo, LHS, 
DET)
Database: the data storing entity
Post-processing module: the module that performs statistical analyses and visualizes
results.

3.2 Background on Risk-Informed Safety Margin Characterization

The RISMC approach employs both deterministic and stochastic methods in a single analysis 
framework (see Figure 9). In the deterministic method set we include:

Modeling of the thermo-hydraulic behavior of the plant (Mandelli, et al., 2015)
Modeling of external events such as flooding (Prescott, Smith, & Sampath, 2015)
Modeling of the operator responses to the accident scenario (Boring et al., 2014; Boring 
et al., 2015).

Figure 9. Overview of the RISMC modeling approach.

Note that deterministic modeling of the plant or external events can be performed by employing 
specific simulator codes but also surrogate models, known as reduced order models (ROM). 
ROMs would be employed in order to decrease the high computational costs of employed codes.
In addition, multi-fidelity codes can be employed to model the same system; the idea is to switch 
from low-fidelity to high-fidelity code when higher accuracy is needed (e.g., use low-fidelity 
codes for steady-state conditions and high-fidelity code for transient conditions).
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On the other hand, in the stochastic modeling we include all stochastic parameters that are of 
interest in the PRA such as:

Uncertain parameters
Stochastic failure of system/components.

As mentioned earlier, the RISMC approach heavily relies on multi-physics system simulator 
codes (e.g., RELAP-7; Anders et al., 2012) coupled with stochastic analysis tools (e.g., RAVEN; 
Rabiti et al., 2013). From a mathematical point of view, a single simulator run can be represented 
as a single trajectory in the phase space. The evolution of such a trajectory in the phase space can 
be described as follows:

( )
= ( , , )

(3)

where:

= ( ) represents the temporal evolution of a simulated accident scenario, i.e., ( )
represents a single simulation run

is the actual simulator code that describes how evolves in time
= ( ) represents the status of components and systems of the simulator (e.g., status of 

emergency core cooling system, AC system).

For the scope of this report, it is worth noting that the variable ( ) contains also information 
about interactions between human models and the considered system. These interactions can be 
both deterministic (e.g., activation/deactivation of components/systems as requested by the set of 
procedures) and stochastic (i.e., failure of omission and commission).

By using the RISMC approach, the PRA is performed by (Mandelli, Smith, Alfonsi, & Rabiti, 
2014):

1. Associating a probabilistic distribution function (pdf) to the set of parameters (e.g., 
timing of events)

2. Performing stochastic sampling of the pdfs defined in Step 1
3. Performing a simulation run given sampled in Step 2, i.e., solve Eq. (3).
4. Repeating Steps 2 and 3 M times and evaluating user defined stochastic parameters such 

as core damage (CD) probability ( ).

3.3 RELAP-7

The RELAP-7 code (Anders et al., 2012) is the new nuclear reactor system safety analysis code
being developed at INL. RELAP-7 is designed to be the main reactor system simulation toolkit 
for the RISMC Pathway of the LWRS Program (Anders et al., 2012). RELAP-7 code 
development is taking advantage of the progress made in the past several decades to achieve 
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simultaneous advancement of physical models, numerical methods, and software design. 
RELAP-7 uses INL’s MOOSE (Multi-Physics Object-Oriented Simulation Environment) 
framework (Prescott, Smith, & Sampath, 2015) for solving computational engineering problems 
in a well-planned, managed, and coordinated way. This allows RELAP-7 development to focus 
strictly on system analysis-type physical modeling and gives priority to retention and extension 
of RELAP5’s multidimensional system capabilities.

A real reactor system is very complex and may contain thousands of different physical 
components. Therefore, it is impractical to preserve real geometry for the whole system. Instead, 
simplified thermo-hydraulic models are used to represent (via “nodalization”) the major physical 
components and describe major physical processes (such as fluid flow and heat transfer). There 
are three main types of components developed in RELAP-7: 

1. one-dimensional (1-D) components,
2. zero-dimensional (0-D) components for setting a boundary, and
3. 0-D components for connecting 1-D components.

3.4 Simulation Controller

One of the features of RELAP-7 is the capability to control the simulation’s temporal evolution 
at each time step where, by “control,” we mean a continuous in time interaction between the 
thermal-hydraulic temporal evolution and the control logic of the plant system. This control 
action is performed by using two sets of variables (Rabiti et al., 2013):

Monitored variables: the set of observable parameters that are calculated at each 
calculation step by RELAP-7 (e.g., average clad temperature)
Controlled parameters: the set of controllable parameters that can be changed/updated at 
the beginning of each calculation step (e.g., status of a valve – open or closed –, or pipe 
friction coefficient).

Starting from Eq. (3), it is possible to split the vector in two parts: 

= (4)

The decomposition is carried in such a way that represents the set of unknowns solved by 
RELAP-7, while represents the set of variables directly controlled and solved by the control 
logic system (including HUNTER).  

Following this new notation, we can say that, for example:

Pressure and temperature in each point of the solution mesh belong to 
Manual activation of a pump belongs to 
Activation of high pressure injection system due to trigger in the control logic (low water 
level in the core) belongs to 
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The governing equation (3) can now be rewritten as follows:

= ( , , )

= ( , , )

(5)

The idea is to use:

(. ) as the calculation performed by RELAP-7
(. ) as the calculation performed by the RELAP-7 control logic system (including 

HUNTER).

The coupling between (. ) and (. ) exists since they both depend on and . From a 
HUNTER point of view, can be:

Computations of PSFs as function of the operator working conditions, set of information 
that is available through the nuclear plant instrumentation, and the human machine 
interface
Operators cognitive model solver, the set of Emergency Operating Procedures (EOPs), 
and in general any set of operator actions (both deterministic and stochastic).

The manipulation of these two data sets of variables is performed by two components of the 
RAVEN simulation controller (see Figure 10):

RAVEN control logic: is the actual system control logic of the simulation where, based on 
the status of the system (i.e., monitored variables), it updates the status/value of the 
controlled parameters
RAVEN/RELAP-7 interface: is in charge of updating and retrieving RELAP-7/MOOSE 
component variables according to the control logic

A third set of variables, i.e., auxiliary variables, allows the user to define simulation specific 
variables that may be needed to control the simulation. From a mathematical point of view, 
auxiliary variables are the ones that guarantee the system to be Markovian (Schmidt, 1985), i.e., 
the system status at time t = t + t can be numerically solved given only the system status at 
time t = t.

The set of auxiliary variables also includes those that monitor the status of specific control logic 
set of components (e.g., diesel generators or AC buses) and simplify the construction of the 
overall control logic scheme of RAVEN.
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Figure 10. RAVEN simulation controller scheme.
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4. HUMAN RELIABILITY SUBTASK PRIMITIVES

4.1 GOMS-HRA

4.1.1 Introduction

One of the challenges in dynamic HRA is the fact that most HRA methods quantify at the overall 
task (i.e., HFE) level while subtask quantification will often be required for the dynamic HRA to 
best follow the scenario as it develops. In an attempt to overcome this challenge, we developed a
new HRA approach through categorizing subtasks and linking them to HEPs (Boring & 
Rasmussen, 2016). This chapter introduces this approach. Although we present a new HRA 
approach, it bridges several existing concepts from other HRA methods. The purpose of 
developing this new approach was to allow us to anchor our analyses on subtasks as required by 
CBHRA, because existing HRA methods did not—in the authors’ views—adequately address 
subtask analysis.

4.1.2 The GOMS Method

The Goals, Operators, Methods, and Selection rules (GOMS) method was first developed by 
Card, Moran, and Newell (1983). Goals represent the high level tasks the human seeks to 
complete, Operators are the available actions the human can take, Methods are the steps or 
subgoals the human takes toward completing Goals, and Selection rules are the decisions the 
humans make. GOMS has been used extensively in human factors as a way to model 
proceduralized activities. It shares underpinnings with task analysis in that it breaks human 
actions into a series of subtasks. By cataloging particular types of actions, it is possible to predict 
human actions or task durations. GOMS has also been used in the human factors community to 
model user interactions with human-computer interfaces. The predictive abilities of GOMS 
provide an alternative to user studies, but GOMS has been criticized for being time consuming 
and labor intensive to model (Rogers, Sharp, and Preece, 2002). With the advent of discount 
usability methods centered on streamlined and cost-efficient data collection for user studies 
(Nielsen, 1989), the popularity of GOMS modeling as an alternative to such studies has declined.

The simplest rendition of GOMS, the Keystroke-Level Model (KLM; Card, Moran, and Newell, 
1980) provides timing data for each type of task, thus making it possible when mapping human 
actions to predict how long certain activities will take. This approach proved instructive for 
repetitive tasks like call center operations, where each scripted action could be translated into its 
overall duration. Thus, it was possible to determine processes or even software use sequences 
that were inefficient. KLM became a tool for human factors, allowing researchers to optimize 
human-computer interfaces. Such optimizations became the poster child of human factors, 
because it was easy to map the repetitive tasks to cost and thereby achieve cost savings with 
more efficient processes and interfaces. Usability engineering still lives under the shadow of the 
easy cost savings realized through KLM, and it can be difficult to cost-justify other human 
factors methods in comparison. 

KLM focuses entirely on the operators in GOMS and presents the following list of Operators and 
corresponding duration times:
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Keystroke of Button Press (K): t = [0.08s, 1.20s], suggesting a time (t) range from 0.8 to 
1.2 seconds (s), depending on the proficiency of the computer user
Pointing to a Target on a Display with a Mouse (P): t = 1.10s
Homing of the Hands (H): t = 0.40s
Drawing Line Segments or Precision Work on the Computer Screen (D): t = 0.9n +
0.16le, considering the number of line (n) segments and the length (l) of the line in 
centimeters
Mentally Preparing for Executing Actions (M): t = 1.35s
Response by the System (R): t = tR, which is the response time (tR) in seconds

KLM builds on task analysis by classifying each human task according to the above Operators. 
The total duration for the task is the sum of the durations for all subtasks denoted by Operators.
Additional and considerably more complex models of GOMS have been developed (see Kieras, 
2004, for a review). For example, Cognitive, Perceptual, and Motor (CPM)-GOMS provides a 
basic model of human cognition to predict task times (Gray, John, and Atwood, 1993), and 
Natural GOMS Language (NGOMSL) and, more recently, GOMSL, provide a software language 
for simulating user actions (Kieras, 2006). 

Most notable for the purposes of this paper is the GOMS extension called GOMS Language 
Evaluation and Analysis (GLEAN; Kieras, 2006). GLEAN, specifically GLEAN4, builds on the 
EPIC human performance modeling architecture, allowing the system to predict upcoming 
human actions. The Selection Rules in GLEAN, coupled with the underlying EPIC architecture, 
allow it to mimic decision making. GLEAN has been used to model errors as defined by 
deviations from procedural scripts (Wood, 2000). GLEAN is also capable of modeling recovery 
actions, which are simply defined as new Goals to resume the proper course of action. 
Curiously, GLEAN has not been used to predict HEPs. That GLEAN can predict humanlike 
decisions and deviations does not expressly allow it to predict the frequency with which such 
errors occur. This limitation is common for human performance modeling approaches and 
represents a significant hindrance to their adoption in dynamic HRA (Boring, Joe, and Mandelli, 
2015).

In the remainder of this chapter, we review the possibility of using GOMS as an approach to 
support dynamic HRA. Specifically, with the focus in GOMS on subtasks and proceduralized 
activities, could GOMS be a feasible method to model basic human actions in nuclear power 
applications dynamically? Further, could the GOMS Operators provide a foundation for auto-
quantification in dynamic HRA?

4.1.3 Adapting KLM

4.1.3.1 Defining Operators

Because KLM is the simplest implementation of GOMS, we will limit our current exploration to 
it. KLM is optimized to human-computer interactions, and the limited Operators reflect this 
application. Because the initial domain for GOMS-HRA will be HRA for U.S. NPPs, KLM 
already finds itself technologically outpacing control room operations. U.S. nuclear power plants 
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are largely legacy analog or mechanical instrumentation and control systems, with minimal 
visible digital technology. As such, most of the Operators in KLM need to be adapted to different 
modes of interaction reflecting earlier technologies. This adaptation should not be self-limiting in 
the sense that it precludes digital interfaces, which are a nascent technology in control rooms.

A review of existing HRA methods for task primitives to use as supplemental Operators in KLM 
was conducted. As noted already, most HRA is performed at the HFE or task level, and the 
methods’ units of analysis are also at the task level. For example, the generic task types found in 
Human Error Assessment and Reduction Technique (HEART; Williams, 1992) do not 
decompose to the subtask level suitable for dynamic HRA. Decision tree approaches like Cause 
Based Decision Tree (CBDT; Parry et al., 1992) or performance shaping factor approaches like 
SPAR-H (Gertman et al., 2005) do not provide ready task primitives that would align to 
Operators. Finally, while the Technique for Human Error Rate Prediction (THERP; Swain and 
Guttman, 1983) method provides subtasks in the form of lookup tables, they are not organized in 
a fashion that presents a ready Operator model of actions.

To find suitable Operators, error taxonomies were investigated next. The Systematic Human 
Error Reduction and Prediction Approach (SHERPA; Stanton et al., 2013) is often used in 
conjunction with hierarchical task analysis to cluster subtasks into meaningful tasks suitable for 
defining HFEs (Boring, 2015). Error taxonomies, however, identify where the task can fail but 
not what constitutes the successful task. For example, in the SHERPA taxonomy, there are three 
types of Retrieval Errors related to failures to obtain necessary information:

R1—Information not obtained
R2—Wrong information obtained
R3—Information retrieval incomplete.

The SHERPA taxonomy does not provide the corresponding correct action for information 
retrieval, which would be more appropriate as Operators in the KLM adaptation. Nonetheless, 
the SHERPA taxonomy, by grouping types of errors by human activity, actually provides a 
template for Operators. Below are the high-level groupings of errors in SHERPA:

Action Errors—Performing the required action incorrectly or failing to perform the 
action
Checking Errors—Looking for required information
Retrieval Errors—Obtaining required information such as from control room indicators
Information Communication Errors—Communicating incorrectly or misunderstanding 
communications
Selection Errors—Selecting the wrong value or failing to select a value
Decision Errors—Making wrong decision or failing to make decision.

Note that Selection Errors should not be confused with the Selection rules in GOMS, which are 
more closely linked to Decision Errors. Note that the final error type—Decision Errors—does 
not appear in the original SHERPA taxonomy and was added in Boring (2015) in order better to 
account for cognitive errors. Separate taxonomies of cognitive errors such as found in Whaley et 
al. (2016) point to the importance of addressing cognitive error mechanisms. While GOMS 
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delineates actions (i.e., Operators) from decisions (i.e., Selection rules), KLM reserved a 
placeholder Operator—namely, Mentally preparing (M)—for cognitive tasks. Thus, in keeping 
with the simplified approach in KLM, our adaptation of KLM will classify Decision Errors as a 
type of Operator.

Error types are not Operators. It remains to convert the SHERPA error types into Operators. This 
is done my looking at the underlying type of activity and selecting a generic label for it. The 
SHERPA error types are manifestations of these generic task types:

Actions (A)—Performing required physical actions on the control boards (AC) or in the 
field (AF)
Checking (C)—Looking for required information on the control boards (CC) or in the 
field (CF)
Retrieval (R)—Obtaining required information on the control boards (RC) or in the field 
(RF)
Instruction Communication (I)—Producing verbal or written instructions (IP) or receiving 
verbal or written instructions (IR)
Selection (S)—Selecting or setting a value on the control boards (SC) or in the field (SF)
Decisions (D)—Making a decision based on procedures (DP) or without available 
procedures (DW)

Note that Operators (with an uppercase “O”) are units of analysis in GOMS, while operators 
(with a lowercase “o”) are the individuals who control the plant. 

The GOMS-HRA Operators generally distinguish between control room actions and field 
actions, the latter of which may be performed by ROs working as balance-of-plant operators or 
by technicians and field workers. Note that reading procedures qualifies as receiving written 
instructions (IR). Selection (S) may involve digital or analog technologies. It is not completely 
orthogonal to Action (A) and represents a specific type of Action commonly performed at plants. 
Checking (C) is likewise a specific type of Retrieval (R) and may find considerable overlap. 
Decision (D) is analogous to the M Operator in KLM, except it is important to delineate a 
decision predicated by a procedure flow (where the decision outcomes are clearly understood) 
and those made outside procedure space (where the decision outcomes are not always clearly 
understood). Severe Accident Management Guidelines (SAMGs), which tend to be somewhat 
open-ended in their format, would generally be equivalent to making decisions without available 
procedures (DW) in this taxonomy, unless a precise set of actions is prescribed in the SAMGs.

4.2 Defining GOMS HRA Task Level Primitives

Task primitive completion times were quantified based on empirical data collected during a 
series of operator in the loop studies conducted as part of a separate control room modernization 
project (Boring, Lew, Ulrich, & Joe, 2014). The empirical data consists of simulator logs 
recorded by an observer shadowing a crew of operators during a series of turbine control 
scenario simulations. The simulator logs provided a detailed account of each procedure step, 
relevant actions, completion times for those actions, and crew communications. The simulator 
logs contained a total of 283 observations spanning five separate scenarios, each of which lasted 
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approximately half an hour. Though the scenarios were specific to turbine control, the task 
primitive timing data extracted from the simulator logs represent universal actions that are 
applicable throughout the entirety of the main control room interfaces.

Each task primitive was fit with several distributions using a maximization likelihood estimate 
(MLE). For each distribution fit an Akaike information criterion (AIC), and Sawa’s Bayesian 
information criterion (BIC), were calculated along with the distribution parameters (Beal, 2007).
AIC and BIC are relative measurements for the quality of statistical models for a given set of 
data. AIC and BIC provide a measurement for goodness of fit, however unlike a P-value it does 
not provide a universal indication if the fit is bad; rather, it ranks the fitted distributions in their 
goodness of fit. The lower the AIC and BIC value the better the distribution fit the data.

Table 1. Fitting of distributions to GOMs task level primitive “Ac” using an MLE.

Distributions AIC BIC Parameter 1 Parameter 2
log-normal 240.7 243.6 2.23 1.18

Weibull 248.3 251.1 0.82 17.3
exponential 248.8 250.3 0.05 NA

gamma 249.6 252.5 0.79 0.04
geometric 250.4 251.8 0.05 NA

negative binominal 251.5 254.3 0.80 19.7
logistic 289.2 292.1 14.1 12.6
normal 295.5 298.4 19.7 26.7
Poisson 961.0 962.5 19.7 NA
uniform NA NA 2 107

Based upon the results displayed in Table 1, the best preforming distribution was lognormal, 
because that distribution had the lowest AIC and BIC. As such, the lognormal distribution has a 
mean-log of 2.23 and a standardized deviation-log of 1.18; resulting in a 5th percentile of 1.23
and a 95th percentile of 65.26. This method was repeated for all GOMs task primitives, and the 
results of the analysis and the calculated parameters are displayed in Table 2.

As can be seen in Table 2, most of the primitives have lognormal as the best preforming 
distribution, except for Dp. This may be because Dp has the smallest sample size, with only 9 
observations and has several other distribution options within 0.3 AIC points. However, the task 
level primitives fit very well with their indicated distributions. The 5th percentile, mean, and 95th

percentile were located for each fit and are displayed in Table 2.

Several of the primitive types described in the previous section could not be successfully 
quantified because the scenario logging data did not contain any relevant observations. The 
unsuccessfully quantified task primitives include performing required physical actions in the 
field (AF), obtaining required information in the field (RF), and selecting or setting a value in the 
field (SF). The scenarios performed during the simulations did not include any operator actions
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Table 2. Results of the fitting of GOMs task level primitives using an MLE, with 5th and 
95th percentiles displayed.

TLP Distribution Parameter Parameter 2 5th Expected 95th 
AC Log-Normal 2.23 1.18 1.32 18.75 65.3
CC Log-Normal 2.14 0.76 2.44 11.41 29.9
DP Exponential 0.02 NA 2.62 51 152.8
IP Log-Normal 2.46 0.76 3.35 15.56 40.7
IR Log-Normal 1.92 0.93 1.47 10.59 31.8
RC Log-Normal 2.11 0.60 3.08 9.81 21.9
SC Log-Normal 2.93 1.11 3.01 34.48 115.6
W Log-Normal 2.66 1.26 1.79 14.28 113.6

involving these task primitives, and therefore no observations could be made. In addition to a 
lack of data, there was a need for a supplemental category to account for extended periods of 
operator waiting, which typically entailed ongoing monitoring and surveillance tasks. A new task 
level primitive was created and called Wait (W), which can encompass a wide time span. 
The set of available task primitives used in the simulation was restricted to the eight primitives 
displayed above in Table 2.

4.3 Discussion

Based on this preliminary exploration, adapting GOMS to HRA provides a useful framework for 
considering human activities at the subtask level in dynamic HRA applications. There remains 
much to be done to further define GOMS-HRA, including:

1. An initial case study in which an operating procedure is encoded with GOMS-HRA 
information and integrated with a dynamic HRA model

2. Validation and possible modification to the GOMS-HRA Operators to align with NPP 
operations

3. Clearer delineation between the Action vs. Selection and Checking vs. Retrieval 
Operators currently considered in GOMS-HRA

4. Validation of the Operator nominal HEP values loosely derived from THERP
5. Exploration of GOMS models like CPM and GLEAN that go beyond KLM and that 

could provide additional modeling functionality to dynamic HRA.

The first two items are explored in this report. Regardless of possible future refinements to 
GOMS-HRA, it is already apparent that the initial KLM-like rendition of GOMS-HRA will serve 
as a useful extension to task analysis in dynamic HRA. By accounting for subtasks and linking 
these subtasks to performance, GOMS-HRA uniquely provides a useful technique to enable 
human crew modeling in dynamic HRA. 
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5. MODELING PERFORMANCE SHAPING FACTORS

5.1 Complexity

Complexity is included in most HRA methods as part of the quantification of the HEP. This fits 
well with our intuitive understanding of complexity and the role it can have in the likelihood of 
successfully conducting a task. Complexity is however a multifaceted concept and there are 
challenges in finding or creating a fitting operationalization.

In Rasmussen et al. (2015) a task complexity model containing six factors (goal-, size-, step-,
dynamic-, structure- and connection complexity) was presented as part of the work in creating 
the Petro-HRA method, in which HRA was adapted for use in the oil and gas industry (see
Laumann et al., 2014, for an overview of the project). The work by Rasmussen et al. (2015)
initially examined 13 complexity factors, with seven subsequently being excluded (procedure-,
temporal-, knowledge-, human-machine interface (HMI)-, interaction- and variation complexity 
and uncertainty). The main reason for the exclusion was overlap with other PSFs in the Petro-
HRA method. For a detailed description of the factors and the literature they are based on, see 
Rasmussen et al. (2015).

5.2 Complexity in Traditional HRA

As described in Section 2.1, many traditional static HRA methods use the quantification 
approach in which generic task types are adapted to the specific situation though PSFs that 
increase or decrease the estimated HEP. Complexity is often directly accounted for through task 
types being described as complex or through a specific complexity PSF. Some of the complexity
sources are also implicitly included as part of the modeling of the task. For example, a complex 
task can be modeled as taking longer to execute in the timeline analysis than simpler tasks and 
thereby also influencing other parts of the analysis outside of the HEP quantification.

5.3 Advantages of Modeling Complexity in CBHRA

As CBHRA allows a scenario to develop (based upon a computation) instead of following a 
scripted path, complexity is not included in the HRA model in the same way as it is in traditional
static HRA. Instead, some of the simulations will develop in such a way that the complexity 
expands, while others will follow paths with reduced complexity levels. This will allow CBHRA 
to better model scenarios that could develop in many ways, with numerous different correct 
response option pathways and various acceptable outcomes or include richer pathways 
comprised of aspects such as recovery actions in which steps must be redone correctly to achieve 
the desired outcome.

A primary advantage of dynamically modeling complexity in CBHRA is that a task can have 
more than one output. Instead of only providing a direct contribution to the HEP for a single 
event tree, it can provide an influence to path choices and reshape the event tree (which will also 
elicit influence on the dynamically changing HEP as some paths will lead to additional non-
desired results) and to time spent on the task (which will also influence the HEP dynamically as 
most scenarios possess some finite time limit for actions to be effective). CBHRA would also 
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allow for the inclusion of different degrees of variance in time spent on a task. This is relevant to 
the inclusion of complexity as it is likely that complex tasks have more variance in time spent 
than a non-complex task (Figure 11).

Another important advantage of modeling complexity in CBHRA is increased capability to 
appropriately calibrate the method by using empirical data. If operational or simulator data are 
available for a scenario, it could be used to evaluate the values in a CBHRA method. Real life 
data on both near misses and major accidents are fortunately scarce, but both simulator data (e.g.,
Boring et al., 2010; Bye et al., 2011) and databases that include human actions (CORE-DATA, 
Kirwan et al., 1997; HERA, Hallbert et al., 2006; SACADA, Chang et al., 2014) could be used in 
calibrating the virtual operator.

5.4 Challenges in Modeling Complexity in CBHRA

The subjective choices behind each PSF selection in traditional HRA may be considered by some
as a weakness due to the subject nature of the evaluation performed by the analyst. Conversely, it
can be viewed as a potential benefit. There are challenges in ensuring the subjective evaluations 
maintain a higher degree of inter-rater reliability and generating evaluations that are valid in 
terms of the implications they have on the quantification of the HEP value. However, if the 
qualitative data collection and the data analysis are properly conducted and well documented, the 
subjective choices made by the analyst can be traced back and serve error reduction activities.
Not having the same access to individual subjective evaluations by analysts on PSF choices will 
be a challenge in dynamic HRA, as it limits which facets of complexity can be included and 
limits the traceability back in terms of error reduction work.

Another challenge could be the time and effort spent in modeling prior to the actual simulation 
being run. While the time and effort would be much lower than performing the equal number of 

Figure 11. Hypothetical time spent on a non-complex and complex task with minimum 
required time of two minutes.

Non-complex task

0

Complex task
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traditional static HRAs, it would also likely be much higher than performing a single traditional 
static HRA.

A decision that has to be made in a CBHRA method is at what level to quantify, which will also 
influence depth in which the scenario is modeled. This has varied in traditional static HRA 
methods from those that quantify at the level of a button push (e.g., THERP, Swain & Guttmann,
1983) to those that describe generic task types at a much higher level (e.g. HEART, Williams,
1988 and 1992). Finding the appropriate level will be a challenge, but as CBHRA can use the 
quantifications to determine the path forwards from the task, it seems likely that the 
quantifications would be done at a low (e.g., subtask) level (Boring & Rasmussen 2016). Care 
must be made in any adaption from an HRA method that is capable of being applied at multiple 
levels of quantification. In fact, the level of quantification must also be matched with a 
compatible level of analysis contained within the PRA based plant model. In particular, the 
timelines for plant evolutions may somewhat dictate the appropriate resolution for the HRA 
quantification in order to allow both to run in sync during the simulation. For additional detail on 
quantification granularity, see Rasmussen and Laumann (2016).

5.5 Suggested Solution

The suggested solution of how complexity could be included in CBHRA models is through two 
types of inputs and two types of outputs. The inputs are: 

1. The autopopulated aspects where the input is automatically gathered from the simulation, 
and

2. The prepopulated aspects that are based on how the task is categorized when the scenario 
is modeled.

The outputs are: 

1. Path choice, with paths leading to success (with varying degrees of efficiency) and failure, 
and 

2. Time spent on the task. 

Both of these outputs would contribute to the HEP, but in a less direct way than in traditional 
static HRA. Including time spent on the task would also allow varying degrees of variance in 
time spent on tasks with varying degrees of complexity.

5.5.1 Autopopulation

The first form of “autopopulated input” is information that is automatically gathered from the 
details already present in the simulation computation. This input would perhaps be the preferred 
form of input, as it would require no additional efforts while building the scenario model.
Examples of automatically gathered inputs for complexity include (with the corresponding 
complexity factors in parentheses):

Total size of the task or scenario (size complexity)
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Number of success criteria (goal complexity)
Number of alternative paths to the goal(s) (goal complexity)
Number of steps conducted (step complexity)
Number of tasks per time (temporal complexity)
Time spent on task (temporal complexity)
Time in scenario
Distance from basic event (structure complexity)
“Errors” made so far (structure complexity)
Current function of safety systems (structure complexity)
Current function of general plant systems (structure complexity).

5.5.2 Prepopulation

Even though a CBHRA would not use an analyst to evaluate a task or scenario in the same way 
as a traditional static HRA, there will have to be some sort of categorization during the process 
of building the scenario model. The choices made in the categorization could be used as 
prepopulated inputs to complexity. The suggested prepopulated inputs are (with the 
corresponding complexity factors in parentheses):

Number of information cues the operator uses in this task (size complexity)
Would this task be perceived as logical by the operators (compared to normal operations 
or other accident situations; structure complexity)
Is the task influenced by factors outside of the operators control (dynamic complexity)
Is the task connected to other tasks (connection complexity)
Is the task connected to other parts of the plant or installation (connection complexity)
Number of procedures used by the operator (procedure complexity)
Number of page shifts done by the operator (procedure complexity)
Ranking of the procedures (procedure complexity)
Number of operators involved (interaction complexity)
Number of HMI elements used (HMI complexity)
HMI quality (HMI complexity)

Does the task rely on operator knowledge (knowledge complexity).

Figure 12. Quantification approach in traditional static HRA.
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5.5.3 Comparison 

As mentioned, quantification will be fundamentally different between traditional static HRA 
(Figure 12) and CBHRA (Figure 13). The largest difference will be that the decisions made by a
human reliability analyst in traditional static HRA will be modeled by a virtual operator in 
CBHRA. The decisions of the virtual operator will, however, be influenced by many of the same 
aspects as shape the traditional analysis. Before a scenario is simulated, potential tasks will have 
to be modeled, and this modeling will contain categorization elements that are similar to the task 
type and PSF choices that are made in traditional static HRA.

5.6 General Form of Complexity Modeling

Task complexity is an integral part of assessing the human component in a power plant. Task 
complexity has a direct influence on human performance in terms of time spent on a task and 
likelihood of success making it one of the most—if not the most—important factors to include in 
an assessment of human reliability. Evidence of the importance of task complexity can be seen in 
the fact that it has been included in almost all HRA methods (Rasmussen et al., 2015). A review 
(Boring, 2010) of analyses conducted using the SPAR-H method (Gertman et al., 2005) found 
that complexity was highly correlated with many other PSFs (see Table 3). As such, it is a 
reasonable PSF to model for its significant overall risk contribution in HRA. Additionally, while 
some PSFs are largely determined by internal factors, task complexity is largely driven by 
external factors, making it an ideal candidate for autopopulation in a dynamic model.

The complexity value is calculated through a numerical value association with each factor, 
prepopulated as part of the modeling multiplied with a weight.  The associated weights are in 

Figure 13. Suggested quantification approach in CBHRA.
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equation (6) and (7) as a preassigned value determining the effect of each of the complexity 
factors.  The use of weights allows for easy adjustments of the method.

Table 3. Spearman rank-order correlations between complexity and other PSFs in SPAR-H
(adapted from Boring, 2010).

SPAR-H PSFs Diagnosis Complexity Action Complexity
Available Time -0.02 0.38*
Stress/Stressors 0.15* 0.35*

Experience/Training 0.21* 0.32*
Procedures 0.25* 0.12*

Ergonomics/HMI -0.05 0.08*
Fitness for Duty -0.03 0.22*
Work Processes 0.24* 0.16*

* Marked correlations are significant at p < 0.05

= × (6)

= + + + + (7)

where CF is the Complexity Factor and W is the Weight associated with the complexity factor.

The complexity factors can be categorized by plant parameters (such as temperature), task 
characteristics (such as procedures), and influences from other tasks (simultaneous tasks or tasks 
in near temporal proximity). The plant parameters and influences from other tasks will largely be 
autopopulated, while the task characteristics will be prepopulated as part of the task modeling.

=  +  
+    

(8)

Note that some PSFs like complexity may need to incorporate additional equations to account for 
lag and linger (Boring, 2015). Lag is a delay in the onset of the influence of that factor, while 
linger is an effect that continues even after the influences on that PSF cease. Additionally, PSFs 
may contain memory and decay.

Memory (a.k.a., history or hysteresis), which is related to lag and linger, means that the 
PSF remains anchored in its previous states, preventing dramatic surges in the face of 
sudden plant upsets or sudden dropouts in the absence of direct influences on the PSF. A 
memory of previous states reflects the pace of physiological changes in many cases, 
barring a sudden onset threat stress (e.g., fight or flight) that dramatically overrides 
existing physical and mental states. Memory is treated mathematically as a cumulative 
moving average and serves to smooth the PSF to sudden changes.
Decay is a type of diminution of the effect of the PSF. In the absence of fresh drivers on 
its performance, a PSF should return to the nominal state over time. For example, 
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elevated stress caused by a plant upset will settle to a normal level after cessation of the 
event. There is significant linger in a PSF like stress; it does not simply abate when the 
source of the stress is removed. However, stress will not continue indefinitely, and it will 
eventually fade to a non-stress state. Thus, a decay function may be built into the basic 
function of the PSF to afford the gradual return to a predefined nominal state. Note that 
decay operates counter to linger—decay accelerates change to the PSF, while linger 
slows it.

These four dynamic PSF functions are summarized in Table 4. In Table 4, let PSF(t) be the 
shape function at time t. Assume events occur at times , = 1, … , . Lag and linger together 
are basically a continuity statement that can be combined into the following equation:

( ) = lim ( ) (9)

Table 4. Dynamic functions that may affect the general calculation of the PSF.

Dynamic PSF Function Effect on PSF Notation

lag A PSF will be slow to change 
at the outset of a new effect

( ) = lim ( )

linger
A PSF will be slow to change 

at the termination of an 
existing effect

( ) = lim ( )

memory

General form of lag and 
linger, denoting that the effect 

of the current PSF is a 
function of preceding values 

for that PSF

( ) = ( )

decay A PSF will settle to its original 
state over time ( ) = (0)      
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6. QUANTIFYING THE HUMAN ERROR PROBABILITY

6.1 Generic Approach to Quantification

Quantification of the human error probability is one of the primary objects of HRA as it used to
assess the performance of human actions within the context of safety. As previously noted in this 
report, the general approach to HRA entails three interrelated components, which are identify 
possible sources of error, model those errors within the context of the system, and quantify those 
errors (Boring, 2009). Quantifying the errors typically includes providing a probabilistic 
description of the likelihood for the errors to occur. The quantification process makes use of 
nominal HEPs, which are base error likelihoods for a generic task type, such as closing a valve. 
These nominal HEPs are intentionally formulated to describe generic human actions to support 
their application to many different tasks. Generic HEPs serve as the basic toolset of HRA 
quantification in which the context of the task can be layered upon to tailor these generic HEPs 
to highly specific tasks. Since errors occur within the context of the system and operating 
situation, PSFs capture the nuances of the specific task and modify the nominal HEP by 
integrating these contextual factors that affect performance. The multiplication of the generic 
nominal HEPs and the task specific PSFs yields the overall HEP value. PSFs can both improve 
or hinder operator performance as can be seen below in Figure 14. The task specific overall HEP 
value provides a comprehensive quantification of the task and can then be used to make risk 
related decisions.

HEPoverall = HEPnominal x PSF

0 < PSF < 1 HEPoverall < HEPnominal
reliability
increases

PSF = 1 HEPoverall = HEPnominal
reliability
stays same

PSF > 1 HEPoverall > HEPnominal
reliability
decreases

Figure 14. Overall HEP calculation based on the nominal HEP and PSFs (from Boring, 
2009).

6.2 Nominal Human Error Probability

6.2.1 GOMS-HRA Nominal Error

One primary goal of the HUNTER approach is to support the ability to autocalculate HEPs based 
on contextual information. Autocalculation of the overall HEPs is needed to capture the 
dynamics of human error while the simulation is running. For example, we are currently 
modeling the effects of complexity as it evolves dynamically (see Chapter 5). As complexity 
increases, so should the HEP. Importantly, complexity changes as the modeled event progresses 
and evolves by increasing or decreasing the HEP for any subtask or slice of time accordingly. 
The change occurs relative to the nominal HEP value. Indeed, one of the primary reasons for 
decomposing subtasks into a GOMS structure is to define the Operators as the basis for the HEP. 

{
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These Operators correspond to nominal HEP values, which can be modified by PSFs like 
complexity.

A reasonable starting point for quantifying the GOMS-HRA Operators is the original HRA 
method, THERP (Swain and Guttmann, 1983). THERP uses a template matching approach in 
which the analyst matches the current subtask being analyzed to similar, predefined subtasks 
provided in THERP lookup tables. Because THERP, unlike most other HRA methods, is subtask 
based, it aligns to the level of analysis required for quantifying the GOMS-HRA Operators. 
Table 5 provides an approximation of the nominal HEPs based on THERP values. The THERP 
lookup tables do not clearly delineate Action (A) and Selection (S), nor Checking (C) from 
Retrieval (R). In many cases, the GOMS-HRA Operators are more generic than the THERP 
lookup tables. As such, these values should be interpreted strictly as preliminary.

Written or implied procedural steps form the subtasks modeled in dynamic HRA. Although the 
degree of strict procedural adherence by nuclear power plant crews may be a matter for some 
debate (Forester et al., 2014), the procedures serve as mileposts for crew actions. Furthermore, 
for modeling purposes, the procedure steps serve to document the solution path, which is 
advantageous to represent crew actions within the modeling simulation. Thus, in order to model 
crew behavior dynamically, procedure steps are coded into the dynamic model. The value of 
GOMS-HRA is that by coding each step as an Operator, it is possible to imbue the model with 
additional information that makes HRA possible. Each Operator classifies the type of action 
being performed, which:

Defines the Operator state in terms of interactions with the plant in the overall dynamic 
model (e.g., by knowing a subtask is an Action, the coding specifies that the crew member 
will manipulate something at the plant, which can prompt the plant model to update itself or 
cause a new dynamic event tree),
Specifies a time range for that action,
Identifies possible error counterparts via SHERPA to successful task outcomes, and
Provides a nominal HEP that may be used as the starting point in computing the dynamic 
HEP based on contextual factors for that subtask.

In short, Operator coding with GOMS-HRA becomes the skeleton to which other model 
elements are affixed. GOM-HRA nominal HEPs are listed in Table 5.

6.2.2 SPAR-H Nominal Error

SPAR-H was developed to simplify the complicated quantification process found in its 
predecessor, THERP. Therefore, SPAR-H uses a dichotic taxonomy to assign tasks to either a 
diagnosis or action type to simplify the quantification process. Action task types consist of 
procedurally based actions, such as manipulating controls to position a component’s setpoint or 
change the state of the component. Examples of actions include adjusting the position of a valve 
or starting a pump. Diagnosis task types entail a cognitive element in which courses of action are 
planned and strategies to control the plant are formulated. Examples of diagnosis include 
determining the cause of an alarm or the unexpected value displayed by an indicator. SPAR-H
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Table 5. GOMS-HRA nominal HEP values for the task level primitives.

Operator Description Nominal 
HEP

THERP 
Source Notes

AC

Performing required 
physical actions on the 

control boards
0.001 20-12 (3)

Assume well-
delineated 
controls

AF

Performing required 
physical actions in the 

field
0.008 20-13 (4) Assume series of 

controls

CC

Looking for required 
information on the 

control boards
0.001 20-9 (3)

Assume well-
delineated 
indicators

CF
Looking for required 

information in the field 0.01 20-14 (4) Assume unclear 
indication

RC

Obtaining required 
information on the 

control boards
0.001 20-9 (3)

Assume well-
delineated 
indicators

RF
Obtaining required 

information in the field 0.01 20-14 (4) Assume unclear 
indication

IP
Producing verbal or 
written instructions 0.003 20-5 (1) Assume omit a 

step

IR
Receiving verbal or 
written instructions 0.001 20-8 (1) Assume recall 

one item

SC

Selecting or setting a 
value on the control 

boards
0.001 20-12 (9) Assume rotary 

style control

SF
Selecting or setting a 

value in the field 0.008 20-13 (4) Assume series of 
controls

DP
Making a decision based 

on procedures 0.001 20-3 (4) Assume 30-
minute rule

DW

Making a decision 
without available 

procedures
0.01 20-1 (4) Assume 30-

minute rule
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Table 6. SPAR-H nominal HEP values for the task level primitives.

Operator Description Diagnosis/ 
Action

SPAR-H
Nominal HEP Notes

AC

Performing required 
physical actions on the 

control boards
Action 0.001 Manual action on 

control boards

AF

Performing required 
physical actions in the 

field
Action 0.001 Manual local 

action in the field

CC

Looking for required 
information on the 

control boards
Action 0.001

Manual scan of 
boards for 

information

CF
Looking for required 

information in the field
Diagnosis + 

Action 0.011 Manual local scan 
for information1

RC

Obtaining required 
information on the 

control boards
Action 0.001 Manual retrieval 

from boards

RF
Obtaining required 

information in the field
Diagnosis + 

Action 0.011 Manual local 
retrieval1

IP
Producing verbal or 
written instructions Diagnosis 0.001 Cognition/language 

production

IR
Receiving verbal or 
written instructions Diagnosis 0.001 Cognition/language 

understanding

SC

Selecting or setting a 
value on the control 

boards

Diagnosis + 
Action 0.011

Both thinking 
about value and 

manually setting it

SF
Selecting or setting a 

value in the field
Diagnosis + 

Action 0.011
Both thinking 

about value and 
manually setting it

DP
Making a decision based 

on procedures Diagnosis 0.001
Reading procedure 

and deciding 
course of action

DW

Making a decision 
without available 

procedures

Diagnosis + 
Action 0.011

Likely to require 
carrying out 

selected action2

1 It is assumed the field activities require greater cognitive engagement due to the balance of 
plant layout complexity. 
2 It is assumed that such non-proceduralized activities will require manual actions to be carried 
out as part of the decision-making process. Otherwise, this is purely a Diagnosis task and would 
have a nominal HEP equal to 0.001.
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defines the nominal HEP for diagnosis tasks as 0.001 (or 1E-3). This value comes from THERP 
Table 20-1, Item 4, which corresponds to the median HEP for a control room diagnosis task 
within 30 minutes. The nominal HEP for action tasks is defined as 0.01 (or 1E-2) based on 
multiple action tasks from THERP (see Table 20-7, Item 1; Table 20-9, Item 3; Table 20-11,
Items 1 and 2; Table 20-12, Item 3; and Table 20-13, Item 1).

Unlike GOMS-HRA, SPAR-H is not based on task level primitives. Yet, the analyses performed 
in this report are aligned to the task level primitives in order to use GOMS-HRA timing data, as 
will be discussed in the next chapter. In order to quantify at the task level, Table 6 maps nominal 
HEPs in SPAR-H to the GOMS-HRA operators. The distinction hinges on whether the Operator 
is a diagnosis, an action, or both. The mapping of SPAR-H to the GOMS-HRA operators is 
subjective, and notes are provided to clarify the mapping. Other mappings may be possible or 
even preferable beyond what we have provided in Table 6.

The nominal HEPs for the Operators for SPAR-H and GOMS-HRA are depicted in Figure 15.
As can be seen, there is minimal disparity between the two values, although the differences are 
greater for field than control room operations. Operator SC, selecting or setting a value on the 
control boards, is the point of greatest disagreement between the two methods, with a difference 
between the nominal HEPs of 1E-2.

Figure 15. Comparison of nominal HEPs for SPAR-H and GOMS-HRA.
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7. SIMULATION CASE STUDY: STATION BLACKOUT

7.1 Station Blackout Background

Typically, commercial nuclear power plants make use of external alternating current (AC) 
electrical power sources during normal operations while at power and during shutdown 
operations. Even if the reactor is not at criticality, the residual heat removal systems require AC 
power to disperse heat generated by the nuclear core. Loss of offsite power (LOOP) events refer 
to the situations in which the external AC electrical power source for the plant are rendered 
unavailable. LOOP events are categorized based on their initiating cause or location, which 
include plant centered, switchyard centered, grid related, and weather related (Eide et al., 2005). 
Plant centered LOOP events occur anywhere within the plant up to the auxiliary or station 
transformers. The appropriate response for plant centered LOOP events entails restoration of 
offsite power to the safety buses. Switchyard centered LOOP events occur with the switchyard 
and up to and including the output bus bar, and requires coordinated efforts between the plant 
and switchyard personnel to restore offsite power. Weather-related LOOP events can occur both 
within the plant or at the switchyard, but the defining characteristic is the weather causation to 
initiate the event (and these events may be somewhat long-lasting). Lastly, the grid-related 
LOOP event occurs somewhere within the external grid, which is particularly challenging 
because the power restoration requires coordination between the plant and external entities 
controlling the grid.

During a LOOP event, emergency diesel generators (DGs) start and run to provide AC electrical 
power until the offsite power can be restored. A station blackout refers to a particular type of 
LOOP event in which the emergency diesel generators also fail and the plant no longer has any 
access to AC electrical power. During station blackout events, the plant relies on systems that do 
not require AC electrical power, such as turbine-driven pumps used to circulate primary reactor 
coolant in order to support the residual heat removal efforts and maintain acceptable nuclear core 
temperatures. These systems have less capacity to remove the residual heat and ultimately will 
result in core damage if power is not restored within a sufficient timeframe. As a result of the 
significant threats posed by LOOP events and in particular station blackout LOOP events, it is 
important to analyze and model the risk associated with the event in order to formulate an 
optimal response strategy and provide guidance on the bounds in which the plant can safely 
operate to mitigate any detrimental effects.

7.2 Simplified Plant System

A PWR simplified model has been set up based on the parameters specified in the OECD main 
steam line break (MSLB) benchmark problem (Nuclear Energy Agency, 1999). The reference 
design for the OECD MSLB benchmark problem is derived from the reactor geometry and 
operational data of the Three Mile Island Unit 1 (TMI-1) Nuclear Power Plant, which is a 2772 
MW two loop pressurized water reactor (see the system scheme shown in Figure 16).
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Figure 16. Scheme of the TMI PWR benchmark (from Nuclear Energy Agency, 1999).

In order to simulate an SBO initiating event we need to consider also the following electrical 
systems (see Figure 17):

Primary power grid line 500 KV (connected to the 500 switchyard)
Auxiliary power grid line 161 KV (connected to the 161 switchyard)
Set of 2 diesel generators (DGs), DG1 and DG2, and associated emergency buses
Electrical buses: 4160 V (step down voltage from the power grid and voltage of the 
electric converter connected to the DGs) and 480 V for actual reactor components (e.g., 
reactor cooling system)
Direct current (DC) system which provides power to instrumentation and control 
components of the plant. It consists of these two sub-systems:

o Battery charger and AC/DC converter if AC power is available
o DC batteries: in case AC power is not available. 
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Figure 17. Scheme of the electrical system of the PWR model (from Nuclear Energy 
Agency, 1999).

7.3 Station Blackout Scenario

The specific station blackout event modeled in this simulation represents a prototypical station 
blackout event. Detailed procedure steps and substeps used in the model to quantify the HEP and 
completion times can be seen later in this chapter in Table 16. After the initial LOOP event, a 
reactor trip triggers, which prompts the operators to enter into an emergency operating 
procedure, i.e., standard post trip actions. During the post trip actions procedure, the operators 
perform a number of plant diagnostic steps to ensure the plant is operating within safety 
envelopes. First they confirm the reactor successfully tripped by verifying a downward trend in 
reactor power. The operators then confirm the turbine has tripped and the main output breakers 
have opened. At this point operators’ efforts turn toward confirming the safety systems are 
functioning properly, which includes assessing that the reactor coolant system inventory is 
sufficient, ensuring at least one recirculating coolant pump is in operation, and residual heat 
removal is capable of dissipating heat from the recirculated coolant. Lastly, the operators check 
the integrity of containment by verifying no radiation alarms are present and assessing 
containment pressure and temperatures. A detailed timeline of the scenario follows below (also 
see Figure 18):
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1. An external event (i.e., earthquake) causes a LOOP due to damage of both 500 KV and 
161 KV lines; the reactor successfully scrams and, thus, the power generated in the core 
follows the characteristic exponential decay curve

2. The DGs successfully start and emergency cooling to the core is provided by the 
Emergency Core Cooling System (ECCS)

3. A tsunami wave hits the plant, causing flooding of the plant itself. Depending on its 
height, the wave causes the DGs to fail and it may also flood the 161 KV switchyard. 
Hence, conditions of SBO are reached (4160 V and 480 V buses are not energized); all 
core cooling systems are subsequently off-line (including the ECCS system)

4. Without the ability to cool the reactor core, its temperature starts to rise
5. In order to recover AC electric power on the 4160 V and 480 V buses, three strategies 

based on the Emergency Operating Procedures (EOPs) are followed:
A plant recovery team is assembled in order to recover one of the two DGs 
The power grid owning company is working on the restoration of the primary 161 
KV line 
A second plant recovery team is also assembled to recover the 161 KV switchyard 
in case it got flooded

6. Due to its lifetime limitation, the DC battery can be depleted. If this is the case, even if 
the DGs are repaired, DGs cannot be started. DCs power restoration (though spare 
batteries or emergency backup DC generators) is a necessary condition to restart the DGs

7. When the 4160 KV buses are energized (through the recovery of the DGs or 161KV 
line), the auxiliary cooling system (i.e., ECCS system) is able to cool the reactor core 
and, thus, core temperature decreases.

 
Figure 18. Sequence of events for the SBO scenario considered.
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7.4 Stochastic Parameters

For the scope of this report, the following parameters are uncertain:

1. _ : recovery time of the DGs
2. _ : recovery time of the 161 KV power grid
3. _ : failure time of the batteries (DC system) due to depletion
4. _ : recovery time of the batteries (DC system).

For each of these parameters we will find the appropriate probability distribution function in 
order to evaluate core damage probability . Core damage is reached when max clad 
temperature in the core reaches its failure temperature (2200° F). 

To analyze the risk associated with a station blackout, the GOMS-HRA method was applied. The 
GOMS-HRA method entails decomposing procedure steps into task primitives, which are then 
used to calculate completion time and HEP values for each procedure step. The completion time 
and HEP values were then input to the RAVEN model to simulate human error events and their 
outcomes in relation to plant thermo-hydraulics. 

7.5 RAVEN Implementation

The reactor vessel model consists of the Down-comers, the Lower Plenum, the Reactor Core 
Model and the Upper Plenum. Three Core-Channels (components with a flow channel and a 
heating structure) were used to describe the reactor core. Each Core-Channel is representative of 
a region of the core (from one to thousands of real cooling channels and fuel rods). 

In this analysis, the core model consists of three parallel Core-Channels (hot, medium and cold) 
and one bypass flow channel. Respectively they represent the inner and hottest zone, the mid,
and the outer and colder zone of the core. The Lower Plenum and Upper Plenum are modeled 
with Branch models. 

There are two primary loops in this model—Loop A and Loop B. Each loop consists of the Hot 
Leg, a Heat Exchanger and its secondary side pipes, the Cold Leg and a primary Pump. A 
Pressurizer is attached to the Loop-A piping system to control the system pressure. Since a 
complex Pressurizer model has not been implemented yet in the current version of RELAP-7
code, a Time Dependent Volume (pressure boundary conditions) has been used instead.

Figure 19 shows the core layout of the pressurized water reactor (PWR) model. The core height 
is 3.6576 m. The reactor consists of 177 fuel assemblies subdivided in 3 zones. The 45 
assemblies in zone 1 are represented by the hot core channel, and the 60 assemblies in zone 2 
and 72 assemblies in zone 3 are respectively represented by the average core channel and the 
cold core channel. The fuel assembly geometry data are taken from U.S. Nuclear Regulatory
Commission reference data (U.S. NRC, 1975). The reactor is assumed to be at end of cycle 
(EOC), 650 EFPD (24.58 GWd/MHMt average core exposure), with a boron concentration of 5 
ppm, and Xe and Sm at the equilibrium. The 3-D core neutronics calculation results for the hot 
full power condition are presented in Todorova, Ivanov, and Taylor (2003).
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Figure 19. Screenshot of the PWR model of RELAP-7 using PEACOCK.

Figure 20. Core zone correspondence (left) and assembly relative power (right).

Figure 20 shows the relative assembly radial power distribution for a quarter of the core. Using 
the values presented in Figure 20, the power distribution fraction and power density for each 
Core-Channel is calculated and shown in the Table 7. The power density is used as input to the 
RELAP-7 model to calculate the heat source.
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Table 7. Power distribution factor for representative channels and average pellet power.

Core Channel Power Distribution 
Factor

Average fuel pellet power 
density (W/m3)

Hot 0.3337 3.90 108

Average 0.3699 3.24 108

Cold 0.2964 2.17 108

7.5.1 Component Modeling

Several control logic related models have been included into the RAVEN/RELAP-7 simulations; 
these are:

Pump coast down
Decay heat
DGs
Power Grid (PG)
Battery system
4160 V bus.

All these components have been defined in the RAVEN/RELAP-7 input file and both links and 
dependencies among them are defined in the RAVEN control logic part. Such features allow us 
to perform a component-centric modeling of the scheme.

Examples of RAVEN components defined in the RAVEN/RELAP-7 input file include:

Pump coast down: this block of the input files defines how the pumps in the primary loop 
decrease their speed in an exponential fashion. Such components are used in the control 
logic part of RAVEN to act on the head of the RELAP-7 pumps (controlled variable) at a 
specific time instant (monitored variable) as follows:

controlled.Head_Pump = 
tools.PumpCoastDown.compute(monitored.time)

Power grid (PG): this block defines a binary variable (i.e., on/off type) for the power 
grid. Power grid status is set to 0.0 at the beginning of the transient and then set to 1.0 
when time reaches the power grid recovery time.
Batteries: These are defined similarly to the power grid input block. The main difference 
is that the battery life can be computed and updated at each time step.

7.5.2 RAVEN Control Logic

The plant control logic has been coded in PYTHON according to RAVEN simulation controller 
schema. Given the sampled parameters: _ , _ , _ and _ , the control logic 
pseudo codes for DG, PG, and batteries are shown below (see Pseudo code 1, 2 and 3).
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The basic idea is that in order to recover AC power either the DGs or the PG need to be 
recovered (see Table 8. Pseudo code 1). Regarding the DG recovery (see Table 9. Pseudo code 
2), even if the DGs are actually fixed, they cannot be started without DC power available (i.e., 
batteries).

Table 8. Pseudo code 1: Battery system control logic

# Battery control logic
if time <= batt_FailTime

battStatus = True
else if time > batt_FailTime and time <= (batt_FailTime + batt_RecTime)
and (not ACStatus)

auxiliary.battStatus = False
else if time > (batt_FailTime + batt_RecTime) or ACStatus

auxiliary.battStatus = True

Table 9. Pseudo code 2: DG  and PG control logic

# DG control logic
if time >= (DG_failTime + DG_recoveryTime) and battStatus
DGStatus = True
else if time <= (DG_failTime)
DGStatus = True
else
DGStatus = False

# PG control logic
if time >= PG_recoveryTime

PGStatus = True
else

PGStatus = False

Table 10. Pseudo code 3: AC power status control logic

# AC status
if PGStatus or DGStatus

ACStatus = True
else

ACStatus = False

7.5.3 Transient Example

An example of a transient simulated using RAVEN/RELAP-7 is shown in Figure 21. In order to 
reach a steady state condition, the simulation is being run for 500 seconds without any change in 
its internal parameters. 

At = 500 , the external initiating event (i.e., earthquake) caused a LOOP event. The reactor 
successfully scrams, AC power is provided by the DGs and the ECCS keeps the reactor core 
cool. 

At = 2000 , the tsunami induced flooding disables the DGs which were providing emergency 
AC power. Without AC power, the ECCS is disabled as well and the core temperature increases. 
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When AC power is recovered (through either DG or PG recovery) the ECCS capabilities are 
restored and core temperature starts to decrease.

Figure 21. Example of LOOP scenario followed by DGs failure using the RELAP-7 code.

For the PG recovery time _ we used as reference NUREG/CR-6890 vol.2 (data collection 
was performed between 1986 and 2004; Eide, Gentillon, Wierman, & Rasmuson, 2005). Given 
the four possible LOOP categories (i.e., plant centered, switchyard centered, grid related, or 
weather related), severe/extreme events (such as earthquake) are assumed to be similar to these 
events found in the weather category, which are typically long-term types of recoveries. This 
category is represented with a lognormal distribution (from NUREG/CR-6890) with = 0.793
and = 1.982 (see Figure 22).

(a)                                                                                (b)
Figure 22. Plot of the pdfs of PG time recovery ( _ ) and DG time recovery ( _ ).

Regarding battery life (i.e., _ ), we chose to limit battery life between 4 and 6 hours using 
a triangular distribution (see Figure 23). In conclusion, Table 11 summarizes the distribution 
associated with each uncertainty parameter.
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(a)                                                                             (b)
Figure 23. Plot of the pdfs of battery life ( _ ) and battery recovery time ( _ ).

Table 11. Probability distribution functions for sets of uncertainty parameters.

Parameter Distribution

_ (h) Weibull (alpha = 0.745, beta = 6.14)

_ (h) Lognormal (mu = 0.793, sigma = 1.982)

_ (h) Triangular (4.0, 5.0, 6.0)

_ (h) Lognormal (mu = 0.75, sigma = 0.25)

7.6 GOMS-HRA Procedure Primitives

The station blackout scenario used to illustrate the GOMS-HRA method contains procedure steps 
containing specific verb terminology. Procedure writing guidelines suggest following the 
convention of consistently using a single verb to denote a particular action. Operators are trained 
to interpret the verb during the training so that each procedure step is clearly defined and 
intuitive for the operator to complete. We followed the standard conventions to define each verb 
used in each procedure step of the Post Trip Actions (PTA) and Station Blackout procedures 
(Procedure Professional Association, 2016; Jang et. al, 2010). Defining the verbs with 
standardized definitions enables the HRA task primitives to map onto each specific procedure 
step (see Table 12) and provide timing data. Each verb represents a single primitive or a series of 
combined primitives required to complete the procedure step. At each step in the procedure, the 
RAVEN model is provided with the appropriate timing and HEP data.
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Table 12. Procedure level primitive definitions.
PLP Definition

Determine Calculate, find out, decide, or evaluate.
Ensure Perform a comparison with stated requirements and take action as necessary to 

satisfy the requirements.
Initiate Begin activity function or process.
Isolate Separate, set apart, seal off, or close boundary.
Minimize Make as small as possible.
Open Change the physical position of a mechanical device to allow flow through a valve 

or prevents passage of electrical current.
Verify Observe an expected condition exist (no actions to correct).

The procedure level primitive used within each procedure step represents a cluster of actions that 
must occur in the proper sequence in order for the operator to successfully complete the step (see 
Table 12). These procedure level primitives can be decomposed into sequences of task primitives 
as illustrated for a procedure step containing the verb check in Figure 24. After reading and 
interpreting the procedure step, the operator walks to the board and looks for the required 
information. If the expected value or state is observed, the operator verbally conveys the value or 
state to the RO and the sequence of primitives concludes. If the expected value or state is not 
observed, the operator then must take corrective actions by setting a state or specific value and 
waiting for those action to take effect. The sequence of task level primitives repeats iteratively 
until the desired value or state is achieved and the step is concluded. The task level primitives 
were mapped following this method for each procedure step in order to support the estimation of
both completion times and HEP values for each step.

Figure 24. Procedure level primitive decomposition into task level primitive example.
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Table 13. Generic procedure level primitive mapping to task level primitives.

Procedure Level Primitive Task Level Primitive Mapping Notes
Determine* CC or RC Information type dependent
Ensure* CC or RC and/or AC and/or SC Information and control action 

type dependent
Initiate AC -
Isolate AC -
Minimize SC -
Open AC -
Verify* CC, RC Information type dependent
*These procedure level primitives can be decomposed into multiple task level primitives as 
illustrated in Figure 24 depicting the check procedure primitive decomposed into DP, AC, SC,
WC, and IP task level primitives.

Table 13 depicts the procedure level primitives identified in the simulation log data that were
used to decompose the procedure level primitives into task level primitives. The procedure level 
primitives are generically defined in this table since the object on which the procedure level 
primitive operates is not defined. The next step is categorizing the procedures based on 
procedure level primitives in preparation for decomposing these procedural level primitives into 
task level primitives.

7.6.1.1 Defining Nominal Timing Data and HEPs

In order to analyze a specific scenario, such as the station blackout event, and calculate the 
nominal HEP and task timing values, the procedure must be evaluated at the procedure level and 
then at the task level. The procedures included in this simulation are based on the post trip action 
and station blackout procedures from a nuclear utility. To protect the proprietary procedures, the 
procedure text cannot be publicly disseminated. Therefore the text for each procedure step has 
been redacted in Table 16.

Since the procedure steps cannot be shared in this report, an example procedure step in Table 14
serves to provide an overview of how a step is mapped to the procedure level and task level 
primitive. For example, procedure step 2 of the post trip actions procedure contains two 
procedure level primitives, which are determine and verify. Determine is an abstract procedure 
level primitive that can be decomposed into three verify substeps. These substeps of procedure 2
are mapped onto the task level primitive of verify, which corresponds to the task level primitive, 
CC, or looking for required information on the control boards.

Table 14. Example mapping of procedure step to procedure and task level primitives.

PTA 2 Determine maintenance of vital auxiliarics acceptance critcria arc mct: Determine'
PTA 2 a Verify the main turbine is tripped Verify Cc

PTA 2 b Verify the main generator output breakers are opcn Vcrify Cc
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To reiterate the process, two mappings are involved:

The plant procedures are classified in terms of procedure level primitives
These procedure level primitives are comprised of task level primitives from GOMS-
HRA.

Because there is a high degree of nuclear industry consensus on terminology in operating 
procedures, the procedure level primitives represent commonly and consistently deployed types 
of activities. It is therefore possible to create a universal mapping of GOMS-HRA task level 
primitives to the procedure level primitives. This universal mapping affords the opportunity for 
reuse of the building blocks in HUNTER across different analyses.

The procedures are an approximation of the actual series of events that would unfold during the 
scenario. Though this reduces some of the realism captured in the simulation, it was necessary 
due to the procedures’ proprietary nature. Furthermore, this is the first attempt at performing an 
integrative HRA model with dynamic HEPs and corresponding thermal-hydraulic computations,
which was made possible by restricting the scope of the simulation to these two generic 
procedures. To illustrate this analysis further, station blackout procedure 5a stating “Ensure 
letdown is isolated” will be described at each stage of the analysis process (see Table 15). The 
procedure level primitive in this step is defined as the verb, Ensure. Ensure could be decomposed 
into different task level primitives, so the context of the procedure step, in this case letdown 
isolation, must be evaluated to determine which of the task level primitives are applicable. In this 
instance, the valve positions are a status indicator with a simple state control as opposed to a 
continuous numerical value setting. As a result, this procedure level primitive translates to the 
task level primitives of CC (look for required information on the control board) and AC (perform 
physical actions on the control board).

Table 15. SBO Step 5 showing mapping of Ensure procedure level primitive.

The procedure steps for the PTA and SBO procedures were mapped to procedure and task level 
primitives as shown in Table 16. Following the analysis of the procedures to map procedure level 
and task level primitives, timing data were estimated for each procedure step as derived from 
GOMS-HRA. Additionally, the procedure steps were aligned with the two primary events in 
which the LOOP occurs and the loos of diesel generators (LODG) and loss of battery (LOB) 
during the station blackout event (see Table 17).

SBO 5 - Minimize rector coolant system leakage Minimize' -
SBO

5 a Ensure letdown is isolated Ensure
Cc

SBO Ac

SBO 5 b Ensurc reactor coolant pump controllcd bleedoff is isolated Ensure Cc
SBO 5 c Ensure reactor coolant system sampling is isolated Ensure Cc
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Table 16. Post trip actions and station blackout procedures mapped to procedure and task 
level primitives.

1Procedure steps at a higher level of analysis than the task level primitives of GOMS-HRA. These steps were not included in the 
model, but rather the actions of these steps were captured within their respective substeps and these substeps were included in the 
model.

Procedure Step Substep Text PLP TLP
PTA I Determine' -
PTA I a Verify Rc

PTA l b Verify Rc

PTA I c Vcrify Rc
PTA 2 Determine' -
PTA 2 a Verify Cc

PTA 2 b Verify Cc

PTA 2 c Verify Cc

PTA 3 - Determine' -

PTA 3 a Verify Rc

PTA 3 b Verify Rc

PTA 4 - Verify Rc

PTA 5 - Determine' -
PTA 5 a Verify Cc

PTA 5 b Verify Rc

PTA 5 c Verify Rc
PTA 6 -

Procedure Text Not Publically Available

Determine' -

PTA 6 a Verify Rc

PTA t, b Verify Rc

PTA ( c Verify Rc
PTA - Determine' -
PTA 7 a Verify Rc

PTA 7 b Verify Cc

PTA 7 c Verify Cc
PTA 8 - Determine' -
PTA 8 a Verify Rc

PTA 8 b Vcrify Rc
PTA 9 - Determine' -
PTA 9 a Verify Rc

PTA 9 b Verify Rc

SBO 3 - Open Rc
SBO 4 - Isolate' -

SBO
4 a Ensure

Cc

SBO Ac

SBO
4 b Ensure

Cc

SBO Ac

SBO
4 c Ensure

Cc

SBO Ac
SBO 5 - Minimize' -

SBO
5 a Ensurc

Cc

SBO Ac

SBO 5 b Ensure Cc

SBO 5 c Ensure Cc

SBO
6 - Ensure

Rc

SBO Sc

SBO
7 - Ensure

Rc

SBO Sc

SBO
8 - Ensure

Cc

SBO Ac

SBO 9 - Initiate Ac
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Table 17. Procedure steps and associated task level primitives mapped onto the main events 
of the modeled scenario and the estimated timing data.

7.7 Autocalculating the Complexity Performance Shaping Factor

7.7.1 SPAR-H Complexity

We have chosen to use the complexity framework from the SPAR-H method (Gertman et al., 
2005) as the starting point of reference for both the range and distribution of the complexity 
value. In SPAR-H, the complexity PSF ranges from a minimum value of 0.1 to a maximum 
value of 5. These PSF values function as HEP multipliers, leading to an increase (up to 5 times 

Procedure Failure Events Time
Procedure Step Substep TLP LOOP LODG LOB St h Expected 95th

PTA 1 - - 1 0 0 - -
PTA I a Rc I 0 0 3.08 9.81 21.9
PTA 1 b Rc I 0 0 3.08 9.81 21.9
PTA 1 c Rc I 0 0 3.08 9.81 21.9
PTA 2 - - 1 0 0 - - -
PTA 2 a Cc 1 0 0 2.44 11.41 29.88
PTA 2 b Cc I 0 0 2.44 11.41 29.88
PTA 2 c Cc i 0 0 2.44 11.41 29.88
PTA 3 - - i 0 0 - - -
PTA 3 a Rc I 0 0 3.08 9.81 21.9
PTA 3 b Rc I 0 0 3.08 9.81 21.9
PTA 4 Rc I 0 0 3.08 9.81 21.9
PTA 5 0 0 - - -
PTA 5 a Cc I 0 0 2.44 11.41 29.88
PTA 5 b Rc I 0 0 3.08 9.81 21.9
PTA 5 c Rc I 0 0 3.08 9.81 21.9
PTA 6 - - 0 0 - - -
PTA 6 a Rc I 0 0 3.08 9.81 21.9
PTA 6 b Rc i 0 0 3.08 9.81 21.9
PTA 6 c Rc I 0 0 3.08 9.81 21.9
PTA 7 - - I 0 0 - - -
PTA 7 a Rc I 0 0 3.08 9.81 21.9
PTA 7 b Cc I 0 0 2.44 11.41 29.88
PTA 7 c Cc I 0 0 2.44 11.41 29.88
PTA 8 - - I 0 0 - - -
PTA 8 a Rc I 0 0 3.08 9.81 21.9
PTA 8 I, Rc 1 0 0 3.08 9.81 21.9
PTA 9 - 1 0 0 - - -
PTA 9 Rc 1 0 0 3.08 9.81 21.9
PTA 9 l• Rc I 0 0 3.08 9.81 21.9
SBO 3 Rc I 1 0 3.08 9.81 21.9

SBO 4 - I I 0 - - -
SBO

4
Cc 1 1 0 2.44 11.41 29.88

SBO Ac 1 1 0 1.32 18.75 65.26
SBO

4 b
Cc I 1 0 2.44 11.41 29.88

SBO Ac i 1 0 1.32 18.75 65.26

SBO
4 c

Cc i 1 0 2.44 11.41 29.88
SBO Ac 1 0 1.32 18.75 65.26
SBO 5 - - 1 1 0 - - -
SBO

5 a
Cc 1 1 0 2.44 11.41 29.88

SBO Ac I 1 0 1.32 18.75 65.26
SBO 5 b Cc 1 1 0 2.44 11.41 29.88

SBO 5 c Cc I 1 0 2.44 11.41 29.88

SBO
6 -

Rc 1 1 0 3.08 9.81 21.9

SBO Sc I 1 0 3.01 34.48 115.57

SBO
7

Rc I 1 0 3.08 9.81 21.9

SBO Sc I 1 0 3.01 34.48 115.57
SBO

8 _ Cc I 1 0 2.44 11.41 29.88
SBO Ac I 1 0 1.32 18.75 65.26
SBO 9 - Ac I 1 0 1.32 18.75 65.26
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more) or decrease (up to 10 times less for the PSF of 0.1) in the likelihood of human error. In 
Table 18, Action and Diagnosis complexity from the SPAR-H worksheet are displayed along 
with their frequency data obtained from Boring et al. (2006).

PSF PSF Level Multiplier Frequency
Complexity: 

Diagnosis
Highly Complex 5 3
Moderately Complex 2 30
Nominal 1 500
Obvious Diagnosis 0.1 Not Reported
Insufficient 
Information

1 2

Complexity: Action Highly Complex 5 3
Moderately Complex 2 30
Nominal 1 500
Insufficient 
Information

1 2

Table 18. SPAR-H worksheet excerpt for the Complexity PSF level multipliers.

The complexity PSF was then fit with several distributions using a maximization likelihood 
estimate (MLE).  For each distribution fit, an Akaike information criterion (AIC), Bayes 
information criterion (BIC), and log-likelihood was recorded along with the distribution 
parameters (see Table 19).  AIC and BIC are relative measurements for the quality of statistical 
models for a given set of data.  AIC and BIC provide a measurement for goodness of fit;
however. Unlike the p-value common in inferential statistics, it does not provide a universal 
indication if the fit is bad; instead, it ranks the available fitted distributions.  Using an MLE on 
the SPAR-H Complexity PSF level frequency data, well know statistical distributions were fit 
with the following results displayed in Table 19.

Distribution AIC BIC Log-Likelihood parameter 1 parameter 2
Lognormal -1515.942 -1502.908 759.971 0.048 0.198
Gamma 282.468 295.502 -139.234 18.099 16.783
Normal 4428.581 4441.615 -2212.290 1.078 0.377
Weibull 4668.917 4681.951 -2332.458 2.464 1.195
Exponential 10756.785 10763.302 -5377.392 0.927 NA
Uniform NA NA NA 1 5
Table 19. Fitting of distributions to SPAR-H frequency data from Boring et al. (2006)

The smallest AIC and/or BIC indicate the distribution that fits the best for complexity is 
Lognormal with mean-log of 0.048 and standard deviation-log of 0.198. Based upon these 
results, the distribution for complexity in the new dynamic method should retain a very similar 
shape. Based upon identified outputs from the simulation, data used to generate equation are in 
Table 20.
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7.7.2 Calculating Complexity

We calculated complexity by two methods—linear and stochastic. The linear method simply 
reflects a traditional multiple regression equation based on a representative simulator run. In the 
linear form, the coefficients are fixed to a single value. In the stochastic form, the coefficients 
represent a range of values, thereby more accurately modeling uncertainty. The linear and 
stochastic forms of complexity are compared to each other later in the SBO simulations 
described in Section 7.9.

7.7.2.1 Linear Form of Complexity

A basic 20 task dataset was generated for illustrative purposes, which is displayed in Table 20.
Complexity increases and decreases based on the situation the operator is facing.  Loss of off-site 
power (LOOP), loss of diesel generator (LODG), and loss of battery (LOB) are all considered 
binary: 1 means there has been a loss, and 0 means the system is operating within normal 
parameters.  Reactor temperature and reactor power level are both randomly sampled from 
RAVEN simulations of an SBO scenario.

Table 20. A 20-task breakdown of complexity for a station blackout event.

Task LOOP LODG LOB Reactor 
Temperature

Reactor 
Power 
Level

SME 
Complexity

Calculated 
Complexity

Normalized 
Complexity

1 0 0 0 566.69 100.00 1 -2.57 1.00
2 0 0 0 565.00 99.99 1 -2.56 1.00
3 0 0 0 568.69 100.00 1 -2.57 1.00
4 0 0 0 567.44 99.99 1 -2.57 1.00
5 1 0 0 540.28 3.15 3 4.40 2.77
6 1 0 0 539.92 2.95 3 4.40 2.77
7 1 0 0 539.49 2.79 3 4.40 2.77
8 1 0 0 561.59 2.38 3 4.39 2.76
9 1 0 0 538.57 2.48 3 4.41 2.77

10 1 0 0 538.55 2.63 3 4.41 2.77
11 1 0 0 538.55 2.63 3 4.41 2.77
12 1 0 0 538.55 2.63 3 4.41 2.77
13 1 1 0 575.73 1.36 4 9.40 4.03
14 1 1 0 624.89 1.29 4 9.35 4.02
15 1 1 1 1775.04 0.75 5 13.21 5.00
16 1 1 1 2092.49 0.66 5 12.89 4.92
17 1 1 1 2257.35 0.60 5 12.73 4.88
18 1 1 1 2374.40 0.54 5 12.61 4.85
19 1 1 1 2407.60 0.00 5 12.59 4.84
20 1 1 1 2400.87 0.51 5 12.59 4.84
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An HRA subject matter expert (SME) assigned complexity ratings for the scenario on a scale 
from 0 to 5, whereby a value between 0 and 1 represented a positive effect of complexity on 
operator performance. These values can be seen in Table 16 in the column labeled “SME 
Complexity.” The initial four trials represent normal operations at full power, which the SME 
assigned a nominal complexity value of 1. For the onset of LOOP, the SME raised the 
complexity value to 3. For LOOP and LODG, complexity rose to 4, while for combined LOOP, 
LODG, and LOB, complexity rose to 5. 

Negative and positive complexity in SPAR-H are traditionally different for action and diagnosis.  
Positive PSF levels are values less than 1 for a PSF, and specifically for complexity in SPAR-H, 
these are between 0.1 – 1.  It is termed positive complexity because the multipliers decrease the 
HEP.  Then the values equal to or greater than 1 are considered negative. The values 1-5 are 
considered negative complexity because these increase HEP. Some tasks may only experience 
negative complexity, which causes the HEP to always increase. The SME judged that there was 
no part of the scenarios that warranted a positive effect of complexity, and no complexity lower 
than 1 was assigned.

The general form of the complexity equation was applied with the following selected weights:

 
= 5 × + 5 × + 5 × 0.001 × 0.02
×

(10)

This equation produced the “Calculated Complexity” column in Table 16. Note that the negative 
weights on temperature and power denote an inverse relationship between complexity and 
temperature and power—as temperature or power go down, complexity tends to increase.1 This 
results in a negative complexity value for some data instances. Since this calculated complexity 
is only a working number, it needs to be normalized. The calculated complexity values were  
normalized in the range of 1 to 5 to match SPAR-H outputs. These normalized values can be 
seen in the column labeled “Normalized Complexity.” It should be noted that it was decided not 
to apply positive effects of complexity with a value between 0 and 1; hence, the normalization 
had a minimum value of 1. While positive effects for complexity are certainly possible, they are 
outside the scope of the present modeled scenario.

Regressing LOOP, LODG, LOB, temperature, and power against the normalized complexity 
value produced Table 21. Thus, it is possible to produce the specific form of the equation to 
support the SBO scenario:

 
= 1.26754 × + 1.26753 × + 1.26753 × 0.00025
× 0.00507 × + 1.65116

(11)

1 This relationship does not always hold true, because high temperature values also indicate a 
plant upset of high complexity. The coefficients should be interpreted as values that produce 
a reasonable approximation to the SME ratings when the calculated complexity is 
normalized.
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Table 21. Regression output with complexity as the dependent variable, based on the data 
from Table 20.

Weight t-Score p-level
Intercept 1.65116 1,148.73 0.001

LOOP 1.26754 909.87361 0.001
LODG 1.26753 59,778.28 0.001
LOB 1.26753 36,441.29 0.001

Temperature -0.00025 -11,070.97 0.001
Power -0.00507 -354.14571 0.001

Note that complexity will vary depending on the exact simulation run. A sample set of 
complexity values is provided in Table 22. Also note that the normalized complexity value 
serves as the multiplier on nominal HEPs for each task level primitive as discussed in the next 
section.

7.7.2.2 Stochastic Form of Complexity

Creation of a model that accommodates the changing events occurring in a nuclear power plant 
to assess complexity was deemed desirable.  The method for fitting this equation works with the 
distributions of the simulated variables with a 99% accuracy.  The 1% of inaccurate complexity 
grades created by the equation was classified as such because they received a complexity score 
outside of the 0-5 range.  The first step to creating this accurate equation is identifying the 
distributions which were associated with the SBO variables.  These distributions are displayed in 
Table 23.

Then sampling from the defined distributions in Table 23 is matched to the procedural steps 
associated with SBO. These procedures have GOMS-HRA task level primitives. LOOP was 
assumed to have occurred within the first step triggering the SBO procedures. This is then 
followed by the LODG and finally the LOB.  The order of loss events is assumed to remain 
constant; however, the step in which they fail is not the same procedure step for each iteration.  
In addition to the changing time of the loss events, temperature and reactor power level also 
fluctuate within a confined realm of uncertainty.  Thus, the data displayed within Table 24 is one 
iteration of the simulation that is generated 5,000 times.

After each of the coefficients of the regression equation is retained, normal distributions are fit to 
the coefficient data. Additionally the distribution of the p-values associated with each coefficient 
and the intercept are recorded, and the majority of the observations were well below 0.05. As 
previously stated the data in Table 24 is created 5000 times. Each iteration has a regression 
equation fit to it.  Table 25 contains a sample of 9 regression coefficients and intercepts from the 
data fitting.
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Table 22. Normalized complexity values for the task level primitives in the modeled 
scenario.

Procedure Step Substep TLP LOOP LODG LOB Temperature Power Complexity

PTA 1 - - 1 0 0 544.9355457 3.795965995 2.763220566
PTA 1 a Rc 1 0 0 540.2847893 3.151447582 2.767650963

PTA I b Rc 1 0 0 539.9177776 2.948685254 2.768770721

PTA 1 c Rc 1 0 0 539.4897279 2.794504476 2.76965943

PTA 2 - - 1 0 0 539.4897279 2.794504476 2.76965943

PTA 2 a Cc 1 0 0 539.1204047 2.670229962 2.770381833

PTA 2 b Cc 1 0 0 538.8176368 2.566108893 2.770985419

PTA 2 c Cc 1 0 0 538.5703479 2.476434329 2.771501891

PTA 3 - - 1 0 0 538.5703479 2.476434329 2.771501891

PTA 3 a Rc 1 0 0 538.3533892 2.251382603 2.772697143

PTA 3 b Rc 1 0 0 538.3454431 2.235960295 2.772777321

PTA 4 - Rc 1 0 0 538.337497 2.220537988 2.772857498

PTA 5 - - 1 0 0 538.337497 2.220537988 2.772857498

PTA 5 a Cc 1 0 0 538.3282549 2.202600319 2.772950753

PTA 5 b Rc 1 0 0 538.3203088 2.187178011 2.77303093

PTA 5 c Rc 1 0 0 538.3123627 2.171755703 2.773111108
PTA 6 - - 1 0 0 538.3123627 2.171755703 2.773111108

PTA 6 a Rc 1 0 0 538.3044166 2.156333395 2.773191286

PTA 6 b Rc 1 0 0 538.2964705 2.140911087 2.773271463

PTA 6 c Rc 1 0 0 538.2885244 2.125488779 2.773351641

PTA 7 - - 1 0 0 538.2885244 2.125488779 2.773351641

PTA 7 a Rc 1 0 0 538.2805783 2.110066471 2.773431818

PTA 7 b Cc 1 0 0 538.2713362 2.092128802 2.773525073

PTA 7 c Cc 1 0 0 538.2620941 2.074191133 2.773618327

PTA 8 - - 1 0 0 538.2620941 2.074191133 2.773618327

PTA 8 a Rc 1 0 0 538.254148 2.058768826 2.773698505

PTA 8 b Rc 1 0 0 538.2462019 2.043346518 2.773778683

PTA 9 - - 1 0 0 538.2462019 2.043346518 2.773778683

PTA 9 a Rc 1 0 0 538.2382558 2.02792421 2.77385886

PTA 9 b Rc 1 0 0 538.2303097 2.012501902 2.773939038

SBO 3 - Rc 1 1 0 569.8187277 1.367845118 4.036840343

SBO 4 - 1 1 0 569.8187277 1.367845118 4.036840343

SBO Cc 1 1 0 572.0553159 1.364682106 4.036297233

SBO Ac 1 1 0 575.7306909 1.359484344 4.035404742

SBO
4 b

Cc 1 1 0 577.9672791 1.356321332 4.034861631

SBO Ac 1 1 0 581.6426541 1.35112357 4.03396914

SBO
4 c

Cc 1 1 0 583.8792423 1.347960558 4.033426029

SBO Ac 1 1 0 587.5546173 1.342762795 4.032533538

SBO 5 - 1 1 0 587.5546173 1.342762795 4.032533538

SBO
5

Cc 1 1 0 589.7912055 1.339599784 4.031990428

SBO Ac 1 1 0 593.4665805 1.334402021 4.031097937

SBO 5 b Cc 1 1 0 595.7031687 1.331239009 4.030554826

SBO 5 c Cc 1 1 0 597.9397569 1.328075998 4.030011715

SBO
6 -

Rc 1 1 0 599.8627131 1.325356528 4.029544764

SBO Sc 1 1 0 606.6214827 1.315798189 4.027903533

SBO
7

Rc 1 1 0 608.5444389 1.31307872 4.027436581

SBO Sc 1 1 0 615.3032085 1.303520381 4.02579535

SBO
8 -

Cc 1 1 0 617.5397967 1.30035737 4.025252239

SBO Ac 1 1 0 621.2151717 1.295159607 4.024359748

SBO 9 - Ac 1 1 0 624.8905467 1.289961845 4.023467257
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Table 23. Distributions associated with the variables for the SBO simulation.

Variable Distribution Minimum Maximum
Loss of Offsite Power Boolean 0 1
Loss of Diesel Boolean 0 1
Loss of Battery Boolean 0 1
Temperature Normal 110 6750
Reactor Power Level Beta 0 100
Time (s) Various Lognormal >0.5 <1000

Table 24. One iteration of the SBO procedures and the assigned values

Loss of Offsite Power Loss of Diesel Loss of Battery Temperature Reactor Power Level TLP Time (s) complexity 
0 0 0 401.35 91.93 Rc 4.81 0.90 
1 0 0 526.45 91.08 Rc 2.92 1.67 
1 0 0 541.27 89.64 Rc 11.22 1.69 
1 0 0 614.78 85.80 Cc 4.80 1.73 
1 0 0 824.77 84.41 Cc 10.17 1.82 
1 0 0 898.71 74.69 Cc 1.75 1.83 
1 0 0 904.39 74.26 Rc 4.83 1.90 
1 0 0 1077.20 72.79 Rc 3.64 1.93 
1 0 0 1171.71 65.02 Rc 16.97 1.93 
1 0 0 1212.82 61.78 Cc 6.42 1.98 
1 0 0 1250.88 57.03 Rc 9.17 1.99 
1 0 0 1374.71 46.85 Rc 6.54 2.00 
1 0 0 1404.57 29.78 Rc 3.65 2.01 
1 0 0 1633.78 19.87 Rc 6.38 2.05 
1 0 0 1807.75 18.77 Rc 3.92 2.10 
1 0 0 1822.36 12.46 Rc 5.65 2.11 
1 0 0 1871.03 11.21 Cc 5.13 2.13 
1 0 0 1923.26 9.16 Cc 1.26 2.14 
1 0 0 1935.54 8.46 Rc 6.54 2.16 
1 0 0 1999.10 7.01 Rc 6.35 2.24 
1 0 0 2004.26 4.88 Rc 9.80 2.36 
1 0 0 2006.91 1.41 Rc 4.02 2.42 
1 0 0 2041.76 1.26 Rc 13.43 2.65 
1 0 0 2047.94 1.23 Cc 15.90 2.75 
1 1 0 2090.87 0.99 Ac 7.64 2.90 
1 1 0 2100.34 0.48 Cc 9.88 2.98 
1 1 0 2113.09 0.28 Ac 16.23 3.00 
1 1 0 2172.69 0.19 Cc 18.87 3.02 
1 1 0 2191.80 0.11 Ac 16.05 3.02 
1 1 0 2207.50 0.09 Cc 3.57 3.06 
1 1 0 2347.97 0.08 Ac 91.37 3.06 
1 1 0 2381.08 0.06 Cc 4.95 3.16 
1 1 0 2591.10 0.05 Cc 7.10 3.18 
1 1 0 2673.32 0.05 Rc 7.83 3.24 
1 1 0 2678.15 0.05 Sc 201.30 3.27 
1 1 0 2686.88 0.01 Rc 9.26 3.29 
1 1 0 2695.23 0.00 Sc 46.84 3.39 
1 1 1 2768.12 0.00 Cc 14.53 3.85 
1 1 1 2776.10 0.00 Ac 12.55 4.08 
1 1 1 2807.54 0.00 Ac 3.66 4.20 
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Table 25. A sample of nine representative observations of the 5,000 regression coefficients 
generated from fitting the simulation data that is similar to Table 24.

Intercept LOOP LOD LOB Temperature Reactor Power 
Level 

0.54 0.68 0.59 0.70 5.5E-04 0.00 
0.79 0.32 0.70 0.65 6.8E-04 0.00 
0.80 0.63 0.42 0.40 6.0E-04 0.00 
0.79 0.76 0.79 0.55 4.0E-04 0.00 
0.51 0.96 0.39 0.39 6.5E-04 0.00 
0.31 0.24 0.84 -0.23 9.2E-04 0.01 
0.35 0.73 0.56 0.34 6.6E-04 0.00 
1.14 0.49 0.52 0.54 4.9E-04 0.00 
1.45 -0.19 0.50 0.57 6.3E-04 0.00 

Initially time was considered as a variable in the regression equation; however its coefficient had 
a very large variance, causing the equation to become volatile.  As such, time was removed from 
the final equation. The distributions of the coefficients are in Table 26, all of which have a 
relatively low variance.

Table 26.  The parameters of the normal distributions associated with their respective 
coefficients.

variable distribution AIC Mean Standard Deviation 5th Percentile 95th Percentile 
Intercept Normal 49492.8 0.863 0.410 0.189 1.538 

LOOP Normal 45145.8 0.480 0.261 0.050 0.910 
LOD Normal 39601.2 0.495 0.147 0.253 0.737 
LOB Normal 41812.8 0.533 0.185 0.229 0.837 

Temperature Normal -24669.1 0.001 0.000 0.000 0.001 
Reactor Power Level Normal 2081.7 0.001 0.003 -0.004 0.006 

Based upon the distributions in Table 26, the following final equation is created:

= norm(mean = 0.86, sd = 0.41) + 
LOOP  norm(mean = 0.48, sd = 0.26) + 
LOD  norm(mean = 0.49, sd = 0.14) + 
LOB  norm(mean = 0.53, sd = 0.18) + 

Temperature  norm(mean = 0.0006, sd = 0.00018) + 
ReactorPower Level  norm(mean = 0.0006, sd = 0.003)

(12)

Then based upon equation (12) and the variable distributions in Table 23, 5,000 new points were 
created and complexity was calculated.  The distribution of complexity is displayed in Figure 25.
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Figure 25. Distribution of complexity when using equation (12) and the variable 
distributions from Table 23.

While complexity does appear to have a slight lognormal distribution, it generally fits a normal 
distribution, with a vast majority of the complexity values above 1.  This distribution is attributed 
to the fact that the complexity space being explored has LOOP, LODG, and LOB about to occur.  
Therefore, this is an emergency space that is well outside the normal operation of a nuclear 
power plant, and this does not retain a lognormal distribution like the SPAR-H data from Boring
et al. (2006) indicated.

Overall equation (12) preforms well with the variable distributions displayed in Table 23 and is 
recommended for use when assessing the level of complexity a control room operator 
experiences during SBO.

7.7.2.3 Comparing the Linear and Stochastic Models of Complexity

As part of the analysis, we have investigated the temporal profile of the complexity factor as a 
function of time for both the linear and the stochastic model. As an example we have chosen the 
scenario where 1000 seconds after LOOP conditions, the EDG is lost, and 200 seconds after this 
last event the battery system is also lost. 
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For the case of the linear model, (see Figure 28) this is simply a single discontinuous line where 
the jumps occur at specific events (i.e., LOOP, LODG, and LOB). Slightly noticeable is the:

Decrease in slope of the line between LOOP and LODG due to the fact that coolant 
temperature and reactor power decrease
Increase in slope of the line after LODG due to the fact that coolant temperature 
increases.

Figure 26. Temporal evolution of the complexity multiplier for the linear case.

For the case of the stochastic model, the complexity multiplier is no longer a line as shown in 
Figure 26 but it is a probabilistic density function that changes in time. For the chosen example 
scenario, the plot is shown in Figure 29. At each time instant the complexity factor is normally 
distributed with mean value plotted in a red line while standard deviation along the mean line are 
shown in blue and green. The shades of blue simply provide a 2-dimensional density plot of such 
distribution.
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Figure 27. Temporal evolution of the complexity multiplier for the stochastic case.

7.8 Quantifying Operator Performance

Operator performance was quantified as a final HEP value using the GOMS-HRA and SPAR-H
nominal HEP values. Table 27 below shows the nominal HEP values, the PSF multiplier, and the 
final HEP values for each procedure step modeled in the simulation. SPAR-H and GOMS-HRA 
were both included to support comparisons and reveal any potential discrepancies between the 
two methods.
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Table 27. GOMS-HRA and SPAR-H HEP values for the task level primitives in the 
modeled scenario.

Procedure
TLP

Nominal HEP PSF
Multiplier

Final HEP

Procedure Step Substep GOMS SPAR-H GOMS SPAR-H

PTA 1 - - - - - -

PTA 1 a Rc 0.001 0.001 2.767651 0.002768 0.002768

PTA 1 b Rc 0.001 0.001 2.768771 0.002769 0.002769

PTA 1 c Rc 0.001 0.001 2.769659 0.00277 0.00277

PTA 2 - - - - - - -

PTA 2 a Cc 0.001 0.001 2.770382 0.00277 0.00277 1

PTA 2 b Cc 0.001 0.001 2.770985 0.002771 0.002771

PTA 2 c Cc 0.001 0.001 2.771502 0.002772 0.002772

PTA 3 - - - - - - -

PTA 3 a Rc 0.001 0.001 2.772697 0.002773 0.002773

PTA 3 b Rc 0.001 0.001 2.772777 0.002773 0.002773

PTA 4 - Rc 0.001 0.001 2.772857 0.002773 0.002773

PTA 5 - - - - - - -

PTA 5 a Cc 0.001 0.001 2.772951 0.002773 0.002773

PTA 5 b Rc 0.001 I 0.001 2.773031 0.002773 0.002773

PTA 5 c Rc 0.001 0.001 2.773111 0.002773 0.002773

PTA 6 - - - - - - -
PTA 6 a Rc 0.001 0.001 2.773191 0.002773 0.002773

PTA 6 b Rc 0.001 0.001 2.773271 0.002773 0.002773

PTA 6 c Rc 0.001 0.001 2.773352 0.002773 0.002773
PTA 7 - - - - - - -

PTA 7 a Rc 0.001 0.001 2.773432 0.002773 0.002773
PTA 7 b Cc 0.001 0.001 2.773525 0.002774 0.002774

PTA 7 c Cc 0.001 0.001 2.773618 0.002774 0.002774

PTA 8 - - - - - - -

PTA 8 a Rc 0.001 0.001 2.773699 0.002774 0.002774

PTA 8 b Rc 0.001 0.001 2.773779 0.002774 0.002774

PTA 9 - - - - - - -

PTA 9 a Rc 0.001 0.001 2.773859 0.002774 0.002774

PTA 9 b Rc 0.001 0.001 2.773939 0.002774 0.002774

SBO 3 - Rc 0.001 0.001 4.03684 0.004037 0.004037

SBO 4 - - - - - - -

SBO
4 a

Cc 0.001 0.001 4.036297 0.004036 0.004036

SBO Ac 0.001 0.001 4.035405 0.004035 0.004035

SBO
4 b

Cc 0.001 0.001 4.034862 0.004035 0.004035

SBO Ac 0.001 0.001 4.033969 0.004034 0.004034

SBO
4 c

Cc 0.001 0.001 4.033426 0.004033 0.004033

SBO Ac 0.001 0.001 4.032534 0.004033 0.004033

SBO 5 - - - - - -

SBO
5

Cc 0.001 0.001 4.03199 0.004032 0.004032

SBO Ac 0.001 0.001 4.031098 0.004031 0.004031
SBO 5 b Cc 0.001 0.001 4.030555 0.004031 0.004031

SBO 5 c Cc 0.001 0.001 4.030012 0.00403 0.00403

SBO
6 -

Rc 0.001 0.001 4.029545 0.00403 0.00403

SBO Sc 0.001 0.011 4.027904 0.004028 0.044307 '

SBO
-

Rc 0.001 0.001 4.027437 0.004027 0.004027
SBO Sc 0.001 0.011 4.025795 0.004026 0.044284

SBO
x

Cc 0.001 0.001 4.025252 0.004025 0.004025

SBO Ac 0.001 0.001 4.02436 0.004024 0.004024

SBO 9 - Ac 0.001 0.001 4.023467 0.004023 0.004023
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7.9 Implementation of HUNTER Modules within RAVEN

The modeling of the HUNTER module has been implemented as a sequential process. Since 
each procedure (either PTA or SBO) is composed of a set of steps, HUNTER has been similarly 
coded as shown in Figure 28. In order to complete the procedure, each single step needs to be 
completed. Recall that each procedure step is characterized by a probability density function 
(pdf; i.e., the time to complete each step is not fixed in time but it is uncertain) and a nominal 
HEP value.

Figure 28. HUNTER modeling scheme for each procedure.

In order to complete each step, two conditions need to be satisfied:

1. The time required to complete the step is passed, and,
2. The completion has to be successful.

The HUNTER modeling of each procedure step has been implemented as shown in Figure 29:

a) Calculate the time required to complete the step: this is performed by randomly sampling 
a time value from the step probability density function

b) Wait for the step completion while the RELAP-7 simulation is running
c) Once the time has passed, calculate the value of HEP; here the complexity factor is first 

calculated given the information about:
a. LOOP status
b. Power level
c. Coolant core outlet temperature
d. DG status
e. Battery status

As indicated in Section 7.7.2, two models are considered: a linear and a stochastic 
complexity model. Once the complexity factor is determined, it multiplies the nominal 
value of HEP in order to obtain the final HEP value.
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d) If the step has been completed successfully, exit and move to the next step otherwise 
return to a). In more detail, this is performed by:

a. randomly sampling a value in the [0,1) interval
b. if > then move to the next step, otherwise return to a)

Figure 29. HUNTER modeling scheme for each procedure step.

7.10 Results

For the scope of this report, two specific LOOP-SBO scenarios have been chosen:

1. Scenario 1: LOOP followed by loss of DG after 1000 seconds (see Figure 30). After 
LOOP, the reactor operators start the PTA procedure. When the DG fails, SBO 
conditions are met and the reactor operators start the SBO procedure and then start the 
DG recovery. Once the DG has failed, the battery system may fail. We split this scenario 
into three sub-scenarios:

a. Scenario 1 without loss of DC systems
b. Scenario 1 with loss of DC systems 120 seconds after loss of DG
c. Scenario 1 with loss of DC systems immediately after loss of DGs

2. Scenario 2: LOOP followed by an immediate loss of DG (see Figure 31). The reactor 
operators start the PTA procedure immediately followed by the SBO procedure and then 
the DG recovery. We split this scenario into three sub-scenarios

a. Scenario 2 with loss of DC systems 200 seconds after loss of DG
b. Scenario 2 with immediate loss of DC systems.

The objective of this section is to determine the probabilistic density functions of the timings to 
complete the PTA and SBO procedures for both scenarios using the HUNTER model.
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Figure 30. Plot of Scenario 1.

Figure 31. Plot of Scenario 2.
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7.11 Analysis of Scenario 1a

In Scenario 1a, the LODG occurs 1000 seconds after LOOP condition. By Monte-Carlo 
sampling, we have determined the probabilistic density function of completing the PTA and SBO 
procedures. These distributions are shown in Figure 32 and Figure 33for the PTA and SBO 
procedures respectively. Both figures also compare the distributions of the same procedure 
obtained using both the linear and the stochastic model. All 4 plots shown in Figure 32 and 
Figure 33also indicate:

The histogram of the values numerical values obtained by using Monte-Carlo sampling 
(green bars)
The plot of the lognormal distribution that fits the obtained data (red line) 
Three characteristics parameters for a log-normal fitting for the obtained data: shape, loc 
and scale2

The minimum and maximum values of the obtained data.

Figure 32. Distribution of the timing to perform PTA procedure (Scenario 1a).

2 Given the probabilistic density function ( , ) of a variable being lognormally 

distributed with shape parameter is: ( , ) =
 ( )

. The and 
parameters are used to shift and scale the distribution so that ( , , , ) is 
identically equivalent to ( , ) with = .
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Figure 33. Distribution of the timing to perform SBO procedure (Scenario 1a)

Note that both models (linear and stochastic) give identical results. In particular, by looking at 
the maximum values, the time required to complete the SBO procedure may be very high (about 
an hour).

7.12 Scenario 1b

This scenario is identical to the Scenario 1a (see previous section) where a failure of the battery 
system is being introduced in the simulation 120 seconds after the loss of the DG. Since the 
distribution of the timing associated to the PTA procedure is identical to the one shown in Figure 
33 (Scenario 1a), we report here only the distribution of the timing associated to the SBO 
procedure (see Figure 34). Note that even though the LOB would cause an increase in the 
complexity level and hence higher HEPs, the overall distribution of the timing required to 
complete the SBO procedure did not change much. This is due to the fact that the uncertainty 
associated to the time required to complete each step of the procedure masks the effect of LOB.

Figure 34. Distribution of the timing to perform SBO procedure (Scenario 1b).
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done to verify the effect of the loss of battery on the overall distribution of the timing required to 
complete the SBO procedure. Again (see Figure 35), the impact of the loss of battery can be 
measured by looking at the slight increase of the characteristic parameters of the fitted log-
normal distribution and at the max of the obtained values. 

Figure 35. Distribution of the timing to perform SBO procedure (Scenario 1c).

7.14 Scenario 2a

In Scenario 2a, the DG fails right after LOOP while the battery system fails after 200 seconds. In 
this situation, the operators perform in sequence the PTA and the SBO procedures. In this 
section, we report the timing associated to complete both procedures. Since the distribution of 
this time is the time convolution of the distribution to complete the PTA and SBO procedure, we 
expect to obtain similar lognormal distribution but with higher values of mean and standard 
deviation. This is confirmed by looking at Figure 36.

Figure 36. Distribution of the timing to perform the sequence of PTA and SBO procedures 
(Scenario 2a).

7.15 Scenario 2b: LOOP/LODG/LOB

This scenario is similar to Scenario 2a except LOB happens right after LODG. Thus, all electric 
power is lost. Given the observations reported for scenarios 1b or 1c, we expect a slight 

linear model ; nominal HEP = 0.001
0.0060.006

0.005 ,hape 0.47
lw —7957
wale —189.05

0.005

0.004 0.004

0.003 0.003

mat —82.26
man .115815

0.002

0.001

0.002

0.001

0.0000 0.0000
200 400 600 800 1000 1200

time Is)

0.006

0.005

0.004

0.003

0.002

0.001

0.000

linear model ; nominal HEP = 0.001

>lawn =0.38
loe-239.71
wale .259.03

rnin .,- 249.21
max 4774.41

500 1000 1500 2000

time Isl

0.006

0.005

0 003

-a 0 003

0 cc )

0.001

0.000
o

stochastic model ; nominal MEP = 0.001

400 600

time NI

800

:hope 0.47
lw —78.3a
wale —190.13

min .10.01 )
m..-5070.30

1000

stochastic model ; nominal MEP = 0.001

11161.--
1000

time NJ

1200

Amp, 0.33
Ice —239.54
wale —257.71

—2421.7574619)

1500 2000



71

modification of the distributions required to complete both PTA and SBO procedures toward the 
right side of the figure. This is confirmed by looking at the data reported in Figure 37.

Figure 37. Distribution of the timing to perform PTA + SBO procedures (Scenario 2b).

7.16 Scenario 2b (mod)

This scenario is identical to the one described above but with a higher value for the nominal 
HEP, i.e., nominal HEP = 1E-2 instead of 1E-3. The goal is to show the impact of a higher HEP 
on overall time distribution to complete both PTA and SBO procedures. Thus we expect an even 
higher shift of the distribution toward the right of the figure as indicated in Figure 38.

Figure 38. Distribution of the timing to perform PTA + SBO procedures (Scenario 2b) with 
higher nominal HEP value  = 0.01.
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failing a single step, which causes the step to be repeated. Hence, in this case, the impact of LOB
is more evident.

Figure 39. Distribution of the timing to perform PTA + SBO procedures using the linear 
complexity model for LOOP+LODG with (left) and without (right) LOB.
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8. CONCLUSIONS

8.1 Accomplishments of HUNTER Modeling

HRA is but one part of the larger PRA framework. HRA interacts with the PRA model; however, 
HRA has often been performed as a standalone analysis. HUNTER provides the possibility to 
reduce this disconnect by interfacing HRA and PRA into a single RAVEN-HUNTER framework 
capable of dynamic simulation based modeling. This report demonstrated a successful 
implementation of the RAVEN-HUNTER framework with dynamic PSFs autopopulated based 
on high-fidelity thermal-hydraulic models of nuclear power plant behavior during a station 
blackout scenario. This approach should not be seen as simply replacing traditional HRA with a 
new modeling form of HRA, but rather as a tool to better integrate human performance (and 
models) into areas of risk analysis where it has not been included thus far. As the demonstration 
in this report is a simplified test case, the full capabilities of HUNTER are not realized.
HUNTER can model many more features when additional PSFs are incorporated, detailed 
aspects of the plant parameters are included, and the scenarios become more diverse and contain 
several paths and possible end states.

This demonstration has also shown how the GOMS-HRA approach can be used to decompose a 
scenario into standardized units of task level primitives. This allows for quantification at a level 
where autopopulating PSFs is possible and provides consistency in how a scenario is 
decomposed and quantified, which is something that has been previously lacking in HRA 
(Rasmussen & Laumann, 2016) – however this aspect is a critical part of a computationally 
based approach to HRA. The use of GOMS-HRA task level primitives and autopopulated PSFs 
allows dynamic modeling and dynamic quantification. This dynamic approach can be used to 
provide a more comprehensive image of risk changes throughout the unfolding of an event as 
opposed to the snapshot of a static (or “averaged”) event captured with traditional HRA.

8.2 Limitations of HUNTER Modeling

The work in this document reflects efforts to demonstrate CBHRA in a nuclear power plant 
station blackout scenario. As this is the initial proof of concept, a number of concessions were 
necessary to ensure this project achieved reasonable results without unduly spreading our efforts 
across overly ambitions research aims. A fully comprehensive simulation of the operator and the 
entire gamut of performance behaviors was beyond the scope of this research, but future efforts 
are underway to refine the methods and work towards this aim. As a result, a number of 
limitations must be disclosed.

First, the level of detail in terms of actions within the procedures was restricted to systems of 
functionally related components as opposed to specific components themselves. For example, in 
procedures found within an actual plant, a specific procedure step would entail multiple 
components and their associated indicators and controls, such as the series of main steam 
isolation valves. In our simulation, verifying the main steam isolation valves closed after the 
initial plant trip event was considered a single action taken by the operator, but in reality this 
consists of visually verifying each valve sequentially. This specific example likely did not 
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generate any meaningful discrepancies between actual operator behavior and the simulation, but 
since this approach was followed to reduce the complexity of the simulation, it is possible that 
nuanced errors, such as visually overlooking a single valve position, were not accurately 
represented in the simulation. Further refinement and added complexity to the procedures 
modeled in the simulation can enhance the accuracy of the simulation and yield more 
generalizable results during future efforts within this same line of research.

The other primary limitation concerns the PSFs used for quantification of human error in the 
model. This work only considered complexity as inputs to calculate the overall HEP within each 
timestep. There are more PSFs that also impact the likelihood of operator error. The HUNTER 
modelling approach is capable of including these PSFs with little modification required. Future 
efforts are aimed providing the functionality to support more PSFs and the complicated 
interrelations they form between themselves and ultimately on human error.

8.3 Future Research on Quantification

8.3.1 Background

The quantification approach currently employed in HUNTER is simplified, dynamically 
calculating a PSF and treating it as a multiplier on the nominal HEP. This approach becomes 
strained for more complex modeling, including cases where the effects of multiple concurrent 
PSFs must be calculated. Future research will look at alternate ways of quantifying HEPs as well 
as accounting for the interrelationships between PSFs. An approach involving Bayesian network 
modeling holds promise for providing a scalable quantification model for HUNTER.

8.3.2 Bayesian Network Basic Concepts

Bayesian Networks (BNs) provide a framework for developing a detailed mathematical model 
encoding the causal relationships between PSFs and errors. BNs address many known issues 
with current HRA methods. First, we explain the basic structure of a BN.  Mathematically, a BN 
is a quantitative causal model that expresses the joint probability distribution of a universe of 
events in terms of a set of nodes, a graph, and a set of conditional probability distributions.

BNs can provide a detailed, causal picture of the interactions between human and machine. This 
enables meeting a key challenge for CBHRA: to move beyond a focus on human error into a 
focus on the interactions between human and machine. (Groth and Swiler, 2013). Groth and
Swiler (2013) also lay out a number of important features of BNs for HRA. 

The method builds a probabilistic model that shows relationships between different variables or 
concepts.  In a BN, the variables are called nodes and are graphically represented as a 
circle/ellipse.  The relationships between nodes are displayed as arcs between nodes; these 
encode mathematical dependence statements.  A basic example of a BN that uses PSFs as nodes 
and displays relationships is shown in Figure 40.
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Figure 40. A simple BN example using SPAR-H PSFs and other shaping factors. 
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In Figure 40 the three PSFs of fitness for duty (FfD), complexity (C), and stress (S) and the 
resultant human error probability (HEP)3 are all nodes. Each node in Figure 40 has two possible 
states: a positive (T) or negative (F) effect on the HEP. The probability of each PSF having a 
positive vs. negative effect is shown in the tables beside each PSF node. The HEP node is 
assigned a conditional probability table, which includes the probability of HEP (true or false) 
given each possible combination of PSFs. Note that the sum of the probabilities of the states for 
each node must be 1.0.  

The influence of PSFs (in blue) is directed to the HEP (in red).  Specifically FfD, S, and C are all 
parent nodes of HFE, and the probability of the HFE depends on the relationship between the 
PSFs and the HFE as well as the marginal probabilities of the PSFs. The BN propagates 
information about node states (both observed and unobserved) through the network to obtain 
probabilities; the underlying mathematics of the BN is explained further in Groth and Swiler 
(2013).

8.3.3 Dynamic Belief Networks

A DBN is a BN that represents a temporal probability model.  Additionally, every hidden 
Markov model (HMM) can also be translated into a DBN, and all discrete DBNs can be HMMs 
(Russell and Norvig, 2003).  So while the same basic technique can once again be called by 
different names, there does exist a difference, namely that HMMs tend to be more 
computationally expensive, with a wider variety in end states.  

DBNs are a useful tool for human error modeling.  To create a DBN, three pieces of information 
are needed:

The prior distribution over the nodes, ( )
The transition model, ( | )
The sensor model, ( | )

The transition model, or transition matrix in the discrete case, changes the BN into a DBN, 
which allows the nodes to step across time.  The sensor model describes the probability of each 
perception, given the current state.  Usually sensor models have an incorporation of Gaussian, or 
normal, errors added.  Error is added to the sensor model because, for example, occasionally an 
individual may be fit for duty, have low stress and complexity but still incorrectly complete a 
task. This inclusion of error in the sensor model allows the possibility of capturing human 
behavior in the model.  Additionally, both the transition model and the sensor model are assumed 
to be stationary, i.e., they do not change when the time steps change, throughout the entire 
simulation.

3 The red node might also be called the human failure event (HFE), which produces the HEP. 
Here, for the purposes of simplification, we simply call the node HEP.
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8.3.4 Advantages of BNs to Enable CBHRA 

Several international research groups are working on BNs for HRA, but there has been little 
work on how these models could be used in a simulation-based framework. Groth and Swiler 
(2013) outline a number of BN features which are valuable for HRA. Several of these features 
are worth highlighting for CBHRA. 

BNs allow explicit representation of causal structure. Groth and Swiler (2013) and Ekanem and 
Mosleh (2016) demonstrate how the BN can be expanded to additional levels of detail to 
inforporate more detailed variables and enable inclusion of information used to assign PSF 
states. Zwirglmaier et al. (in press) demonstrates how this causal structure can be used to draw a 
direct map from “PSF details” (that is, observable plant parameters and more detailed 
decomposition of PSFs such as those discussed in Groth and Mosleh (2012a) and Rasmussen 
2015) to PSFs to HEPs. Zwirglmaier also illustrates how the full causal structure can be reduced 
into a smaller BN using node reduction algorithms. 

BNs also allow the modeler to sub-divide the universe into smaller pieces, which can be more 
easily quantified. This has multiple advantages, including that the BN framework is also 
compatible with Bayesian updating, which enables using sparse data to update specific aspects of 
the model (Groth, Smith, and Swiler 2014). Furthermore, BNs conditional independence 
relationships to eliminate dependencies on unnecessary variables, which   produces a 
substantially simpler expression of the joint probability distribution. It follows that we can also 
use BNs to create individual BNs for independent tasks or events. 

The BN framework can be used to capture PSF-to-PSF interdependency, as illustrated in Groth 
and Mosleh (2012b). This ability enables capturing a crucial factor missing from current HRA 
models:  cause and effect relationships between PSFs. This is important for traditional HRA to 
enable capturing PSF relationships within the same event, but also takes on extra importance for 
CBHRA, where it is necessary to capture PSF relationships across events timesteps. The 
mechanism for doing this is a repeating temporal model: a Dynamic Bayesian Network (DBN). 

8.3.5 BNs for GOMS-HRA Primitives in HUNTER

It has been previously shown that different PSFs have differing effects on the overall behavior of 
errors (Whaley et al., 2016).  As such, the goal is to empirically create sub-models that show 
which PSFs and PSF details4 are related to specific types of errors.  BNs can be used to develop 
a unique model for each GOMS-HRA primitive. For example, the ability of a reactor operator to 
follow a procedure that specifies verify is strongly tied to their previous training, overall crew 
behavior, and control panel design, rather than complexity.  The perception is that task 
complexity, whether high or low, should have little bearing on an operator’s ability to read a 

4 A PSF detail is supporting information that defines the PSF. The complexity model presented 
in Chapter 4 outlines several of the factors that form the overall complexity coefficient. Such 
factors are PSF details.
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display.  This idea has been explored by Zwirglmaier et al (2015 and in press) through a specific 
set of PSFs and PSF details, which are causally related to data perception errors.

Figure 41. Verify mini-BN for use within HUNTER (adapted from Zwirglmaier et al., in 
press).

As such, a similar mini-BN is proposed for the verify primitive as in Figure 41.  The structure is 
proposed but needs to be validated, as nodes can be added or removed based on the typical data 
available when assessing a power plant operator’s ability to verify data in the procedural steps.  
In addition to each time step having a different relationship between nodes, transition models and 
sensor models need to be described thoroughly. Building a collection of mini-BN for the 
procedure primitives would provide two key additions to the HUNTER framework:

1. Easy reuse of the mini-BNs for creation of a wide range of scenarios. Just as the 
procedure primitives can be chained together to represent a full range of scenarios, the 
mini-BNs can likewise be applied to quantify this same range of scenarios.

2. Scalability of the mini-BN to allow incorporation of additional PSFs and PSF details 
without affecting models that have been built around procedure primitives. In other 
words, it is possible to increase the model fidelity by refining the mini-BN without 
rebuilding the entire model of human actions in HUNTER.
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8.4 Future Research on Empirical Data Collection

8.4.1 HRA Empirical Databases

Empirical evidence is a crucial aspect to form the basis for HRA model creation and validation,
since without empirical data the model remains merely SME speculation. The lack of adequate 
human performance data poses the greatest barrier for generating accurate HEP calculations.
Ideally, dynamic HRA assessments would be based on comprehensive simulator or plant 
operations data in order to accurately reflect the contextual factors and human actions during 
HFEs. Currently, the necessary databases with sufficient detail to support dynamic HRA are not 
yet available, though recent efforts toward creating a framework to populate these databases 
appear quite promising. Currently several researchers INL have contributed to the Scenario 
Authoring, Characterization, and Debriefing Application (SACADA) database (Chang et al., 
2014), which has recently become available for potential use in dynamic HRA. International 
efforts supporting suitable databases for HRA model creation and validation are also underway. 
The Korea Atomic Energy Research Institute (KAERI) database is projected to be accessible
between 2017 and 2018.

8.4.2 SACADA

The SACADA database superseded the Human Event Repository and Analysis (HERA) database
used in previous HRA efforts (Hallbert et al., 2006).  SACADA was developed with many 
parallel goals, one of which is to support current and future HEP calculations. The variables 
recorded are aimed at providing sufficient contextual information to support quantification in 
HRA.  The database consists of categorical variables describing the state of the nuclear power 
plant control room.

8.4.3 KAERI

KAERI is currently developing its own HRA database.  The database has not been released in 
English but is set for a release in the future (Park et al., 2013). Data collection is based on 
guidelines and multiple assessments.  The main goal is to provide for the provision of sufficient 
and reliable HRA data with the aim to inform second generation HRA methods. KAERI’s efforts 
should prove informative to HUNTER aims.

8.4.4 HRA Data Studies at Norwegian University of Science and Technology

The Center for Safety and Human Factors is a research group at the Department of Psychology at 
the Norwegian University of Science and Technology that has experience with HRA through the 
Petro-HRA project. The Petro-HRA project developed an HRA method tailored specifically for 
the oil and gas industry. Through this work, several knowledge gaps were identified in the 
relationship between PSFs and human performance. A human performance focused laboratory is 
currently being developed with the goal of gaining a better understanding of how factors such as 
time pressure, training, teamwork, HMI, and alarms influence the performance in major accident 
scenarios. The laboratory will conduct simulator based studies. At this stage not all of the details 
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are ready (such as the fidelity of the simulator), but it is likely that inputs from this laboratory
can be used in validation or calibration of HUNTER modeling.

8.5 Future Research Demonstrations of HUNTER

In this initial demonstration of HUNTER, the model of the operator consisted of a single PSF 
and spanned only a single scenario, i.e,. the station blackout event. Future research in HUNTER 
aims to move toward improving the HUNTER framework to the level in which a plant PRA 
model can be dynamically simulated. Dynamically modeling a plant PRA entails a large scale 
effort comprised of simulating accident sequence progressions, plant systems and components, 
and operator actions. To support this functionality, future work on HUNTER will incorporate 
more scenarios and the necessary procedures to support the operator models. Additionally, the 
operator cognitive model will be enhanced by incorporating additional PSFs to capture a more 
accurate portrayal of the operator and human error likelihoods during scenario evolutions.
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